A physical map of the permuted genome of bacteriophage T1. 1980

N Ramsay, and D A Ritchie

A restriction map has been constructed for the DNA of coliphage T1 which locates the cleavage sites of the restriction endonucleases, BglI (6 cuts), BglII (16 cuts), EcoRI (2 cuts), HindIII (2 cuts) and PstI (2 cuts). Digestions with BglI and BglII reveal fragments which are present in sub-molar quantities. Two methods, one using the selective removal of molecular ends with exonuclease III and the other involving the comparison of digestion patterns of concatemeric and virion DNA, have shown that the submolar fragments are at or close to the ends of the molecules. Digestions with BglI show that one terminal fragment has a very precise molecular weight whereas all the others are of heterogenous molecular weight. These results are consistent with the model for DNA packaging in which maturation is initiated at a precise site on a concatemeric precursor and proceeds by the encapsidation of up to four successive 'headfuls' of 1.065 genome equivalents (MacHattie and Gill 1977).

UI MeSH Term Description Entries
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

N Ramsay, and D A Ritchie
September 1981, Virology,
N Ramsay, and D A Ritchie
July 1984, The Journal of general virology,
N Ramsay, and D A Ritchie
January 1983, Molecular & general genetics : MGG,
N Ramsay, and D A Ritchie
January 1988, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
N Ramsay, and D A Ritchie
January 1980, Molecular & general genetics : MGG,
N Ramsay, and D A Ritchie
July 1974, Proceedings of the National Academy of Sciences of the United States of America,
N Ramsay, and D A Ritchie
August 1986, Journal of bacteriology,
N Ramsay, and D A Ritchie
October 1976, Virology,
N Ramsay, and D A Ritchie
October 1976, Virology,
Copied contents to your clipboard!