[Role of intralaminar thalamic nuclei in strengthening inhibition induced by stimulation of the caudate nucleus]. 1980

K B Shapovalova, and S I Bazhenova

The influence of preliminary subthreshold activation of thalamic intralaminary nuclei on achievement of instrumental reflex and on inhibitory effects, caused by stimulation of the caudate nucleus head, were studied in chronic experiments on 5 dogs with a model of instrumental defensive conditioned reflexes, providing for maintainance of a given posture. It was shown that the preceding high-frequency electrostimulation of intralaminary nuclei activates motor components of the instrumental response (shortened latency, EMG and mechanogram of the response, increased amplitude of instrumental response) and significantly lowers threshold strength of the current, necessary for obtaining "caudate pause". The greatest increase in inhibitory influences, caused by stimulation of the caudate nucleus head, was observed when thalamic stimulation preceded stimulations, localized in the dorsolateral segment of the caudate nucleus head. The obtained data are discussed in aspect of Buchwald et al. hypothesis on the existence of "caudate loop".

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K B Shapovalova, and S I Bazhenova
January 1976, Neuroendocrinology,
K B Shapovalova, and S I Bazhenova
December 2000, The Journal of comparative neurology,
K B Shapovalova, and S I Bazhenova
May 1976, Arkhiv anatomii, gistologii i embriologii,
K B Shapovalova, and S I Bazhenova
March 1985, Brain research,
K B Shapovalova, and S I Bazhenova
December 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K B Shapovalova, and S I Bazhenova
June 1995, Consciousness and cognition,
K B Shapovalova, and S I Bazhenova
March 1969, Bollettino della Societa italiana di biologia sperimentale,
K B Shapovalova, and S I Bazhenova
March 1971, Experimental neurology,
Copied contents to your clipboard!