Activation of adenosine 3',5'-monophosphate-dependent protein kinase in normal and malignant bone cells by parathyroid hormone, prostaglandin E2, and prostacyclin. 1981

N C Partridge, and B E Kemp, and M C Veroni, and T J Martin

Hormonal activation of cAMP-dependent protein kinase has been studied in cultured cells derived from a rat osteogenic sarcoma and in osteoblast-rich cells grown from newborn rat calvaria. Both cell strains contain adenylate cyclase activities which respond to parathyroid hormone (PTH) and a variety of prostanoids. PTH, prostaglandin E2 (PGE2), and prostacyclin (PGI2) were all capable of activating cAMP-dependent protein kinase(s) in suspensions of the two cell types. Activation was very rapid in all cases, being detectable at 10 sec and maximal between 30-60 sec. Using saturating concentrations of hormones, the protein kinase activity ratio remained elevated (between 0.6-0.9) for up to 35 min after the start of PGE2 stimulation, but declined toward basal activity ratio 5-10 min after stimulation with PTH or PGI2. Each of the hormones caused a dose-dependent increase in activation of cAMP-dependent protein kinase in both cell types. Half-maximal activation of the enzyme occurred at 2 X 10(-9) M bovine PTH for calvarial cells, at 10(-8) M bPTH for osteogenic sarcoma cells, and at 2-4 X 10(-8) M PGE2 and 1-3 X 10(-7) M PGI2 for both cell types. Maximal activation of protein kinase occurred before maximal cAMP accumulated, implying that only a fraction of cAMP is biologically significant. These two cell strains provide a useful means of analyzing postreceptor events in the hormonal regulation of bone cells.

UI MeSH Term Description Entries
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001859 Bone Neoplasms Tumors or cancer located in bone tissue or specific BONES. Bone Cancer,Cancer of Bone,Cancer of the Bone,Neoplasms, Bone,Bone Neoplasm,Neoplasm, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
April 1982, Endocrinology,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
January 1977, Molecular and cellular endocrinology,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
February 1974, The Journal of biological chemistry,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
July 1971, Biochemical and biophysical research communications,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
December 1973, The Journal of biological chemistry,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
July 1980, The Journal of clinical endocrinology and metabolism,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
January 1991, Acta physiologica Hungarica,
N C Partridge, and B E Kemp, and M C Veroni, and T J Martin
January 1974, Endocrinology,
Copied contents to your clipboard!