[Self-stimulation reaction in normotensive and hypertensive rats]. 1980

O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian

The part of noradrenergic mechanisms in self-stimulation (SS) operant behaviour was studied in rats. In all experiments systolic blood pressure (BP) in the tail artery was measured by means of photocells. It was found, that small doses of noradrenaline facilitate the SS, while high doses depress or stop it. The depressive effect is accompanied by a marked increase of BP. Effective blockade of beta-adrenoceptive structures by inderal suppresses SS, and the inhibitory effect is accompanied by a small decrease of BP. Suppressing effect of alpha-adrenoblocking agent, phentolamine, is even more pronounced, but is accompanied by a marked decrease of BP. Beta-agonist isadrin causes a marked facilitation of SS without changes of BP. It is suggested that positive reward in the lateral hypothalamus is due to a direct stimulation of beta-adrenoceptive noradrenergic neuronal elements. Chronic neurogenic hypertension is developed by an overloading of the higher nervous activity. In chronic hypertensive rats there is a pronounced suppression of SS. A transient fail of BP caused by injection of catapresan (hemiton) results in a temporary recovery of normal SS behaviour. It may be concluded that reduction of lever-pressing rate during acute and chronic neurogenic hypertensions is related to baroreceptor mechanisms. The role of the autonomic nervous system in SS behaviour is discussed.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic

Related Publications

O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
January 1985, Stroke,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
October 1981, Physiology & behavior,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
May 1988, Behavioral and neural biology,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
June 1979, Acta physiologica Scandinavica,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
August 1982, Biulleten' eksperimental'noi biologii i meditsiny,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
January 1985, Cardiology,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
January 1985, Journal of cardiovascular pharmacology,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
January 1986, Physiology & behavior,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
January 1982, Life sciences,
O G Baklavadzhian, and A G Darbinian, and K Hecht, and M Poppaĭ, and I Kh Taturian
March 1990, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!