Characterization of an ATP-dependent Ca2+ uptake system in mouse pancreatic microsomes. 1981

B C Ponnappa, and R L Dormer, and J A Williams

The uptake of 45Ca2+ was studied in microsomes prepared from isolated mouse pancreatic acini. These microsomes accumulated 45Ca2+ in the presence of ATP; uptake was potentiated by addition of oxalate. Sequestered microsomal 45Ca2+ was only gradually removed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) but was readily released by the divalent cation ionophore A23187. Inhibitors of mitochondrial oxidation and mitochondrial calcium transport had little effect on microsomal 45Ca2+ uptake. A separate subcellular fraction enriched in plasma membranes took up 45Ca2+ poorly compared with the microsomal fraction. Half-maximal 45Ca2+ uptake by the microsomal fraction was observed at a free Ca2+ concentration of 1.1 microM. 45Ca2+ uptake was dependent on Mg-ATP and showed a pH optimum at 6.8-7.0. Subfractionation of the total microsomes into "heavy" and "light" microsomal fractions indicated higher 45Ca2+ uptake activity associated with the heavy fraction. A Ca2+-activated, Mg2+-dependent ATPase was demonstrated in this fraction. Stimulation of pancreatic acini with the cholecystokinin analogue caerulein prior to homogenization increased the subsequent rate of 45Ca2+ uptake by the microsomal fraction.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D010070 Oxalates Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure. Oxalate,Ethanedioic Acids,Oxalic Acids,Acids, Ethanedioic,Acids, Oxalic
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

B C Ponnappa, and R L Dormer, and J A Williams
May 1983, The American journal of physiology,
B C Ponnappa, and R L Dormer, and J A Williams
November 1984, European journal of biochemistry,
B C Ponnappa, and R L Dormer, and J A Williams
January 1983, The Journal of membrane biology,
B C Ponnappa, and R L Dormer, and J A Williams
January 1982, FEBS letters,
B C Ponnappa, and R L Dormer, and J A Williams
April 1985, Fukuoka igaku zasshi = Hukuoka acta medica,
B C Ponnappa, and R L Dormer, and J A Williams
November 1969, Journal of biochemistry,
B C Ponnappa, and R L Dormer, and J A Williams
December 1997, Molecular and cellular biochemistry,
B C Ponnappa, and R L Dormer, and J A Williams
May 1985, Journal of cellular physiology,
B C Ponnappa, and R L Dormer, and J A Williams
February 1980, Nature,
B C Ponnappa, and R L Dormer, and J A Williams
May 1974, Journal of biochemistry,
Copied contents to your clipboard!