Interaction of fluorescent gonadotropin-releasing hormone with receptors in cultured pituitary cells. 1981

Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt

A fluorescent derivative of the gonadotropin-releasing hormone (GnRH) agonist analog, [D-Lys6]GnRH, was synthesized for receptor studies and shown to be biologically active. The rhodamine-derivatized peptide (Rh-GnRH) retained 40% of the receptor binding activity of [D-Lys6]GnRH, and 50% of the luteinizing hormone-releasing activity assayed in cultured pituitary cells. The fluorescent analog was employed to visualize the distribution of GnRH receptors in cultured pituitary cells, using the technique of video-intensified fluorescence microscopy. The binding of Rh-GnRH was confined to the large gonadotrophs which comprised 15% of the cell population. The specificity of the binding was shown by the absence of significant fluorescence in the presence of a 100-fold excess of [D-Lys6]GnRH, or when Rh-GnRH was incubated with choriocarcinoma, neuroblastoma, or 3T3 cell lines devoid of GnRH receptors. The interaction of Rh-GnRH with living pituitary cells was characterized by an initial diffuse distribution, followed by the formation of polar aggregates that later appeared to be internalized. These observations emphasize the value of fluorescent derivatives of GnRH for elucidating the course of the interaction with specific receptors on pituitary gonadotrophs. The initial results indicate that GnRH-receptor complexes undergo aggregation during stimulation of luteinizing hormone release, and are later internalized for subsequent degradation and/ or intracellular actions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011966 Receptors, LHRH Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors. GnRH Receptors,Gonadoliberin Receptors,Gonadorelin Receptors,Gonadotropin Releasing-Hormone Receptors,LHFSHRH Receptors,LHRH Receptors,Luliberin Receptors,Receptors, GnRH,Receptors, Gonadoliberin,Receptors, Gonadorelin,Receptors, Luliberin,Follicle Stimulating Hormone-Releasing Hormone Receptors,GnRH Receptor,Gonadorelin Receptor,Gonadotropin-Releasing Hormone Receptor,LHRH Receptor,Luteinizing Hormone Releasing Hormone Receptors,Luteinizing Hormone Releasing-Hormone Receptor,Receptor, LHRH,Receptors, Gonadotropin Releasing-Hormone,Receptors, LHFSHRH,Follicle Stimulating Hormone Releasing Hormone Receptors,Gonadotropin Releasing Hormone Receptor,Gonadotropin Releasing Hormone Receptors,Hormone Receptor, Gonadotropin-Releasing,Luteinizing Hormone Releasing Hormone Receptor,Receptor, GnRH,Receptor, Gonadorelin,Receptor, Gonadotropin-Releasing Hormone,Receptors, Gonadotropin Releasing Hormone,Releasing-Hormone Receptors, Gonadotropin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
October 1980, Endocrinology,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
February 1982, Science (New York, N.Y.),
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
June 1984, Endocrinology,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
December 1990, Biology of reproduction,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
July 1979, Molecular pharmacology,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
April 1983, Molecular and cellular endocrinology,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
April 1982, Endocrinology,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
July 1992, The Journal of clinical endocrinology and metabolism,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
December 1987, The Journal of clinical endocrinology and metabolism,
Z Naor, and D Atlas, and R N Clayton, and D S Forman, and A Amsterdam, and K J Catt
January 1983, Endocrinology,
Copied contents to your clipboard!