Inhibition of electron transfer in the cytochrome b-c, segment of the mitochondrial respiratory chain by a synthetic analogue of ubiquinone. 1980

B L Trumpower, and J G Haggerty

A synthetic analogue of ubiquinone, 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole, inhibits oxidation of succinate and NADH-linked substrates by rat liver mitochondria. Inhibition occurs both in the presence (state 3) and absence (state 4) of ADP. With isolated succinate-cytochrome c reductase complex from bovine heart mitochondria the quinone analogue inhibits succinate-cytochrome c reductase and ubiquinol-cytochrome c reductase activities but does not inhibit succinate-ubiquinone reductase activity. Inhibition of cytochrome c reductase activities is markedly dependent on pH in the range pH 7-8. At pH 7.0 inhibition occurs with an apparent Ki less than or equal to 1 x 10(-8) M, while at pH 8.0 the apparent Ki is more than an order of magnitude greater than this. Spectrophotometric titrations of 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole show a visibly detectable pKa at pH 6.5 attributable to ionization of the 6-hydroxy group. These results indicate that this quinone derivative is a highly specific and potent inhibitor of electron transfer in the b-c1 segment of the respiratory chain. Because of the structural analogy, it is likely that the mechanism of inhibition involves disruption of normal ubiquinone function. In addition, this inhibition depends on protonation of the ionizable hydroxy group of the inhibitory analogue or on protonation of a function group in the b-c1 segment.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013384 Succinate Cytochrome c Oxidoreductase An electron transport chain complex that catalyzes the transfer of electrons from SUCCINATE to CYTOCHROME C. It includes ELECTRON TRANSPORT COMPLEX II and ELECTRON TRANSPORT COMPLEX III. Succinate Cytochrome c Reductase

Related Publications

B L Trumpower, and J G Haggerty
September 1987, Biochimica et biophysica acta,
B L Trumpower, and J G Haggerty
November 1971, Biochemical and biophysical research communications,
B L Trumpower, and J G Haggerty
April 1978, The Journal of biological chemistry,
B L Trumpower, and J G Haggerty
February 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!