Is excitation by enkephalins of hippocampal neurones in the rat due to presynaptic facilitation or to disinhibition? 1980

H L Haas, and R W Ryall

1. Extracellular recordings of postsynaptic potentials (field potentials), population spikes or unitary action potentials and intracellular records of excitatory and inhibitory postsynaptic potentials were obtained from neurons in superfused slices of rat hippocampus, to study the mechanism of the excitatory effect of enkephalins. 2. Most experiments were carried out with a synthetic, stable enkephalin analogue (FK 33-824) administered either by perfusion or by local administration (ionophoresis or pressure application from micropipettes). Comparisons were made when appropriate with metenkephalin, morphine, 4-aminopyridine and bicuculline. 3. The enkephalins caused a small increase in extracellular recordings of e.p.s.p.s and a more marked increase in the amplitude and frequency of population spikes. The effect of 4-aminopyridine on the extracellular e.p.s.p. was more marked than that of enkephalins, indicating that the enkephalins may have an additional effect upon regenerative spike mechanisms in the dendrites, which is not possessed by 4-aminopyridine. The actions of the enkephalins and morphine were blocked by naloxone, which did not block the action of bicuculline or 4-aminopyridine. 4. The increase in extracellularly recorded e.p.s.p. was shown to be due to a marked increase in the e.p.s.p. amplitude recorded intracellularly in CA1 and CA3 neurones and dentate granule cells. The augmented e.p.s.p.s evoked more action potentials. 5. The increase in e.p.s.p. amplitude was not accompanied by any marked change in membrane potential or resistance. 6. The inhibition of background firing by appropriate stimulation and recorded as peristimulus histograms was not reduced by FK 33-824. There was a slight prolongation. 7. Intracellularly recorded i.p.s.p.s were not blocked by FK 33-824. There was a prolongation of the i.p.s.p.s and an apparent increase in latency due to the unmasking and prolongation of e.p.s.p.s. 8. Dendritic excitability, as tested with ionophoresis of DL-homocysteic acid locally to the dendrites was unaffected by FK 33-824. 9. It is concluded that the increase in e.p.s.p.s produced by enkephalins can be explained by an increased release of excitatory transmitter, as occurs with 4-aminopyridine.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H L Haas, and R W Ryall
September 1978, The Journal of physiology,
H L Haas, and R W Ryall
January 1990, Neuroscience,
H L Haas, and R W Ryall
August 1994, The Journal of physiology,
H L Haas, and R W Ryall
December 1983, Neuroscience letters,
H L Haas, and R W Ryall
January 2019, Frontiers in synaptic neuroscience,
H L Haas, and R W Ryall
February 1982, Brain research,
Copied contents to your clipboard!