Role of phospholipids in coupling of adenosine and dopamine receptors to striatal adenylate cyclase. 1981

M B Anand-Srivastava, and R A Johnson

Treatment of striatal washed particles with phospholipase A(2) or C abolished the activation of adenylate cyclase by dopamine but not by N(16)-phenylisopropyl adenosine (PIA). The inhibition of dopamine-sensitive cyclase was dependent on Ca2+ and increased with time and phospholipase concentration. F(-)-sensitive cyclase was not affected by phospholipase A(2) treatment, but was enhanced by phospholipase C treatment. Phospholipase D did not affect basal, PIA, dopamine, or F(-)-sensitive cyclase activities. The observed effects of phospholipase A(2) were not due to either the detergent effect of lysophospholipids or to contaminating proteases. Dopamine-sensitive cyclase, inactivated by pretreatment with phospholipase A(2), was restored by asolectin (a soybean mixed phospholipid), phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine, but not by phosphatidylinositol. Phosphatidylserine and phosphatidylcholine were equipotent in restoring dopamine-sensitive activity. Lubrol-PX, a nonionic detergent, abolished completely the dopamine-sensitive cyclase activity, whereas PIA-sensitive activity was slightly inhibited. In contrast, digitonin inhibited dopamine- and PIA-sensitive cyclase activity in a parallel fashion. Lubrol-PX released some adenylate cyclase into a 16,000 x g supernatant fraction that was stimulated by PIA but not by dopamine. Removal of most of the free detergent by Bio-bead SM 2 enhanced stimulation by PIA but did not restore sensitive cyclase. The data suggest that the requirement for phospholipids for the coupling of dopamine and adenosine receptors to the striatal adenylate cyclase may be different and that the adenosine receptors may be more tightly coupled to the enzyme than are dopamine receptors.

UI MeSH Term Description Entries
D008297 Male Males
D010660 Phenylisopropyladenosine N-Isopropyl-N-phenyl-adenosine. Antilipemic agent. Synonym: TH 162. Isopropylphenyladenosine,L-Phenylisopropyladenosine,N(6)-Phenylisopropyl-Adenosine,L Phenylisopropyladenosine
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine

Related Publications

M B Anand-Srivastava, and R A Johnson
May 1993, Cellular signalling,
M B Anand-Srivastava, and R A Johnson
September 1978, Biochemistry,
M B Anand-Srivastava, and R A Johnson
January 1983, Pharmacology, biochemistry, and behavior,
M B Anand-Srivastava, and R A Johnson
January 1984, Advances in experimental medicine and biology,
M B Anand-Srivastava, and R A Johnson
March 1977, FEBS letters,
M B Anand-Srivastava, and R A Johnson
October 1990, European journal of pharmacology,
Copied contents to your clipboard!