Reflexes evoked in leg muscles from arm afferents: a propriospinal pathway in man? 1981

H M Meinck, and B Piesiur-Strehlow

Long-loop reflexes from arm afferents onto motoneurones of leg muscles were investigated in 57 healthy subjects by means of H reflex testing and tonic EMG testing. In various tonically activated leg muscles, brachial nerve stimulation exerted stereotyped reflex responses which regularly consisted of an initial depression phase (mean onset latency: 60 ms) and a subsequent facilitatory phase (mean onset latency: 80 ms). H reflex studies, in contrast, only revealed the later facilitation. Except for this difference, both methods led to similar results: fibres responsible for the response were identified as low-threshold skin afferents with a conduction velocity of about 40 m/s. Noxious stimulation reinforced the effects of innocuous stimulation. The receptive field for the reflex response was not restricted to the ipsi- and contralateral arm regions but included the face and the rostral part of the trunk above the buttock. Percutaneous stimulation of dorsal roots C4 and T9, respectively, resulted in a shortening of the onset latencies of both depression and facilitation, with T9 stimulation. It is therefore suggested that the reflexes described are mediated via a directly descending, long spinal pathway.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011826 Radial Nerve A major nerve of the upper extremity. In humans the fibers of the radial nerve originate in the lower cervical and upper thoracic spinal cord (usually C5 to T1), travel via the posterior cord of the brachial plexus, and supply motor innervation to extensor muscles of the arm and cutaneous sensory fibers to extensor regions of the arm and hand. Nerve, Radial,Nerves, Radial,Radial Nerves
D012023 Reflex, Monosynaptic A reflex in which the AFFERENT NEURONS synapse directly on the EFFERENT NEURONS, without any INTERCALATED NEURONS. (Lockard, Desk Reference for Neuroscience, 2nd ed.) Monosynaptic Reflex
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

H M Meinck, and B Piesiur-Strehlow
July 2003, Experimental brain research,
H M Meinck, and B Piesiur-Strehlow
July 1981, Electroencephalography and clinical neurophysiology,
H M Meinck, and B Piesiur-Strehlow
October 2016, Experimental physiology,
H M Meinck, and B Piesiur-Strehlow
January 1984, Experimental brain research,
H M Meinck, and B Piesiur-Strehlow
August 1986, The Journal of physiology,
H M Meinck, and B Piesiur-Strehlow
April 2018, BMJ (Clinical research ed.),
H M Meinck, and B Piesiur-Strehlow
January 1977, Acta neurologica Belgica,
H M Meinck, and B Piesiur-Strehlow
December 2011, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Copied contents to your clipboard!