Sequence specificity of methylation in higher plant DNA. 1981

Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D044503 5-Methylcytosine A methylated nucleotide base found in eukaryotic DNA. In ANIMALS, the DNA METHYLATION of CYTOSINE to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In PLANTS, the methylated sequence is CpNpGp, where N can be any base. 5-Methylcytosine Monohydrochloride,5 Methylcytosine,5 Methylcytosine Monohydrochloride,Monohydrochloride, 5-Methylcytosine
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
April 1977, Nucleic acids research,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
December 1987, BioEssays : news and reviews in molecular, cellular and developmental biology,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
August 1981, Biokhimiia (Moscow, Russia),
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
August 1970, Plant physiology,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
January 1980, The International journal of biochemistry,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
August 2021, Journal of photochemistry and photobiology. B, Biology,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
February 1986, Journal of molecular biology,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
December 1997, Gene,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
February 2012, Genome biology,
Y Gruenbaum, and T Naveh-Many, and H Cedar, and A Razin
April 1994, Nucleic acids research,
Copied contents to your clipboard!