Association of binding sites for guanine nucleotides with adenylate cyclase activation in rat pancreatic plasma membranes. Interaction of gastrointestinal hormones. 1978

M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe

1. The activation of rat pancreatic adenylate cyclase by guanosine 5'-(beta-gamma-imido)triphosphate (p[NH]ppG) and GTP, and by the two gastrointestinal hormones pancreozymin (as C-terminal octapeptide) and secretin was correlated with the binding of [8-3H]guanosine 5'-(beta-gamma-imido)triphosphate to rat pancreatic plasma membranes. 2. The low basal adenylate cyclase activity was stimulated 17-fold by p[NH]ppG (after a 2 min lag period), 3,5-fold only by GTP, 21-fold by C-terminal octapeptide of pancreozymin, and 8-fold by secretin. GTP inhibited competitively the activation of adenylate cyclase by p[NH]ppG with a Ki,app almost identical with the Ka,app (0.3 micron). p[NH]ppG and GTP enhanced the stimulation by secretin more markedly than that by the C-terminal octapeptide of pancreozymin, leading to the same maximal activity. Both hormones suppressed the lag period of activation by p[NH]ppG. 3. The binding of [8-3H]p[NH]ppG was dependent on time, temperature and Mg2+ and it was also a saturable and reversible process. Scatchard plots with a concavity upward were linearized after co-addition of ATP, Mg2+ and an ATP-regenerating system that abolished low-affinity sites for p[NH]ppG without saturating higher affinity sites, GTP, ITP and UTP inhibited [8-3H]p[NH]ppG binding to the high-affinity sites in concentration ranges identical with those found for adenylate cyclase activation. Considerable binding of [8-3H]p[NH]ppG was still evident at 20 degrees C, but enzyme activation was not observed any more, except in the presence of hormones.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1981, Journal of cyclic nucleotide research,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
June 1977, The Journal of biological chemistry,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1981, Journal of cyclic nucleotide research,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
February 1983, Journal of immunology (Baltimore, Md. : 1950),
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
February 1997, Neurochemical research,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1981, Peptides,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
November 1978, Archives of biochemistry and biophysics,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1981, Advances in cyclic nucleotide research,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1981, Endocrine reviews,
M Svoboda, and P Robberecht, and J Camus, and M Deschodt-Lanckman, and J Christophe
January 1987, European journal of biochemistry,
Copied contents to your clipboard!