Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. 1981

K Schneider, and H G Schlegel

The soluble hydrogenase (hydrogen-NAD+ oxidoreductase, EC 1.12.1.2) of Alcaligenes eutrophus H16 was shown to be stabilized by oxidation with oxygen and ferricyanide as long as electron donors and reducing compounds were absent. The simultaneous presence of H2, NADH and O2 in the enzyme solution, however, caused an irreversible inactivation of hydrogenase that was dependent on the O2 concentration. The half-life periods of 4 degrees C under partial pressures of 0.1, 5, 20 and 50% O2 were 11, 5, 2.5 and 1.5 h respectively. Evidence has been obtained that hydrogenase produces superoxide free radical anions (O2-.), which were detected by their ability to oxidize hydroxylamine to nitrite. The correlation between O2 concentration, nitrite formation and inactivation rates and the stabilization of hydrogenase by addition of superoxide dismutase indicated that superoxide radicals are responsible for enzyme inactivation. During short-term activity measurements (NAD+ reduction, H2 evolution from NADH), hydrogenase activity was inhibited by O2 only very slightly. In the presence of 0.7 mM-O2 an inhibition of about 20% was observed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000421 Alcaligenes A genus of gram-negative, aerobic, motile bacteria that occur in water and soil. Some are common inhabitants of the intestinal tract of vertebrates. These bacteria occasionally cause opportunistic infections in humans.
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

K Schneider, and H G Schlegel
March 1995, Archives of biochemistry and biophysics,
K Schneider, and H G Schlegel
January 1995, BioFactors (Oxford, England),
K Schneider, and H G Schlegel
October 1992, Journal of bacteriology,
K Schneider, and H G Schlegel
July 1994, Journal of bacteriology,
K Schneider, and H G Schlegel
September 1999, Journal of bacteriology,
K Schneider, and H G Schlegel
January 1990, Archives of microbiology,
K Schneider, and H G Schlegel
April 1981, Archives of microbiology,
Copied contents to your clipboard!