Duplicated rDNA sequences of variable lengths flanking the short type I insertions in the rDNA of Drosophila melanogaster. 1981

H Roiha, and D M Glover

We describe cloned segments of rDNA that contain short type I insertions of differing lengths. These insertions represent a coterminal subset of sequences from the right hand side of the major 5kb type I insertion. Three of these shorter insertions are flanked on both sides by a short sequence present as a single copy in uninterrupted rDNA units. The duplicated segment is 7, 14 and 15 nucleotides in the different clones. In this respect, the insertions differ from the 5kb type I insertion, where the corresponding sequence is found only at the right hand junction and where at the left hand side there is a deletion of 9 nucleotides of rDNA (Roiha et al.,1981). One clone is unusual in that it contains two type I insertions, one of which is flanked by a 14 nucleotide repeat. The left hand junction of the second insertion occurs 380 nucleotides downstream in the rDNA unit from the first. It has an identical right hand junction to the other elements and the 380 nucleotide rDNA sequence is repeated on both sides of the insertion. We discuss the variety of sequence rearrangements of the rDNA which flank type I insertions.

UI MeSH Term Description Entries
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
Copied contents to your clipboard!