Effects of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic B-cells. Suggestion for a role of calmodulin? 1981

J C Henquin

The possible involvement of calmodulin in insulin release was evaluated by studying the effects on intact islets of trifluoperazine and pimozide, two antipsychotic agents known to bind strongly to calmodulin in cell-free systems. Trifluoperazine (10-100mum) produced a dose- and time-dependent inhibition of the two phases of glucose-stimulated insulin release. The effect was not reversible by simple washing of the drug, but could be prevented by cytochalasin B or theophylline. Trifluoperazine also inhibited the release induced by glyceraldehyde, oxoisocaproate, tolbutamide or barium, but not that stimulated by 10mm-theophylline or 1mm-3-isobutyl-1-methylxanthine. Pimozide (0.5-10mum) also produced a dose-dependent inhibition of insulin release triggered by glucose, leucine or barium, but did not affect the release induced by methylxanthines. Glucose utilization by islet cells was not modified by trifluoperazine (25mum), which slightly increased cyclic AMP concentration in islets incubated without glucose. The drug did not prevent the increase in cyclic AMP concentration observed after 10min of glucose stimulation, but suppressed it after 60min. Basal or glucose-stimulated Ca(2+) influx (5min) was unaffected by 25mum-trifluoperazine, whereas Ca(2+)net uptake (60min) was inhibited by 20%. Glucose-stimulated Ca(2+) uptake was almost unaffected by pimozide. In a Ca(2+)-free medium, trifluoperazine decreased Ca(2+) efflux from the islets and did not prevent the further decrease by glucose; in the presence of Ca(2+), the drug again decreased Ca(2+) efflux and inhibited the stimulation normally produced by glucose. In the absence of glucose, trifluoperazine lowered the rate of Rb(+) efflux from the islets, decreased Rb(+) influx (10min), but did not affect Rb(+) net uptake (60min). It did not interfere with the ability of glucose to decrease Rb(+) efflux rate further and to increase Rb(+) net uptake. The results show thus that trifluoperazine does not alter the initial key events of the stimulus-secretion coupling. Its inhibition of insulin release suggests a role of calmodulin at late stages of the secretory process.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D010868 Pimozide A diphenylbutylpiperidine that is effective as an antipsychotic agent and as an alternative to HALOPERIDOL for the suppression of vocal and motor tics in patients with Tourette syndrome. Although the precise mechanism of action is unknown, blockade of postsynaptic dopamine receptors has been postulated. (From AMA Drug Evaluations Annual, 1994, p403) Antalon,Orap,Orap forte,R-6238,R6238
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin

Related Publications

J C Henquin
January 1990, Scandinavian journal of clinical and laboratory investigation. Supplementum,
J C Henquin
October 1984, Experientia,
J C Henquin
January 1984, Journal of pediatric gastroenterology and nutrition,
J C Henquin
January 1994, Journal of cellular biochemistry,
J C Henquin
September 1981, Canadian journal of physiology and pharmacology,
J C Henquin
January 1976, The Journal of physiology,
Copied contents to your clipboard!