Anomalous potential response and (Na+ + K+)-ATPase in in vitro frog gastric mucosa. 1981

M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm

In general, increasing K+ on the nutrient side decreases the transmucosal PD (nutrient becomes more negative) but after bathing the mucosa in zero K+ media for about 30 min, or longer, elevation of K+ on the nutrient side increases the PD, an anomalous effect. In Cl- media, increasing nutrient K+ from zero to 4 mM produces an increase in PD (an anomalous response) of 3.1 and 5.3 mV in 2 and 5 min, respectively. Ouabain (10(-3) M) to the nutrient side abolished the anomalous response as did removal of Na+ (choline for Na+) from bathing media. In SO4(2-) media (SO4(2-) for Cl-), a significant anomalous PD response was observed when K+ on the nutrient side was increased from zero to 1, 2 or 3 mM but not to higher K+ concentrations. In this case, ouabain also abolished the anomalous response. It is postulated, on the basis of the effects of ouabain and the use of choline media, that an electrogenic (Na+ + K+)-ATPase pump is present on the nutrient-facing membrane in which more Na+ than K+ are transported per cycle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
January 1972, Pflugers Archiv : European journal of physiology,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
January 1969, Biochimica et biophysica acta,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
May 1980, The American journal of physiology,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
September 1974, Experientia,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
February 1985, Current eye research,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
June 1999, The Journal of biological chemistry,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
September 1980, Experimental eye research,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
February 1975, Comparative biochemistry and physiology. A, Comparative physiology,
M Schwartz, and T C Chu, and G Carrasquer, and W S Rehm
December 1975, The American journal of physiology,
Copied contents to your clipboard!