The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. 1982

J L Bennetzen, and B D Hall

The DNA sequence of the gene for the fermentative yeast alcohol dehydrogenase has been determined. The structural gene contains no introns. The amino acid sequence of the protein as determined from the nucleotide sequence disagrees with the published alcohol dehydrogenase isozyme I (ADH-I) sequence for 5 of the 347 amino acid residues. At least one, and perhaps as many as four, of these differences is probably due to ADH-I protein heterogeneity in different yeast strains and not to sequencing errors. S1 nuclease was used to map the 5' and 3' ends of the ADH-I mRNA. There are two discrete, mature 5' ends of the mRNA, mapping 27 and 37 nucleotides upstream of the translation initiating ATG. These two equally prevalent termini are 101 and 91 nucleotides, respectively, downstream from a TATAAA sequence. Analysis of the 3' end of ADH-I mRNA disclosed two minor ends upstream of the major poly(A) addition site. These three ends map 24, 67, and 83 nucleotides, respectively, downstream from the translation-terminating TAA triplet. The sequence AA-TAAG is found 28 to 34 nucleotides upstream of each ADH-I mRNA poly(A) addition site. Sequence comparisons of these three 3' ends with those for four other yeast mRNAs yielded a 13-nucleotide consensus sequence to which TAAATAAGA is central. All of the known yeast poly(A) addition sites map at or near the A residue of a CTA site 25 to 40 nucleotides downstream from this consensus octamer.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J L Bennetzen, and B D Hall
October 1979, The Journal of biological chemistry,
J L Bennetzen, and B D Hall
February 1984, Molecular and cellular biology,
J L Bennetzen, and B D Hall
September 1985, Yeast (Chichester, England),
J L Bennetzen, and B D Hall
March 1971, Biochimica et biophysica acta,
J L Bennetzen, and B D Hall
December 1984, Molecular and cellular biology,
J L Bennetzen, and B D Hall
May 1983, Proceedings of the National Academy of Sciences of the United States of America,
J L Bennetzen, and B D Hall
December 1982, Nucleic acids research,
J L Bennetzen, and B D Hall
December 1970, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!