Structure and dynamics of phospholipid membranes: an electron spin resonance study employing biradical probes. 1982

P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe

The large zero-field splitting of rigid biradicals makes them important candidates for spin probes of phospholipid membranes. Here we develop an electron spin resonance line-shape model for such probes on the basis of the stochastic Liouville equation. Particular emphasis is given to the slow-diffusional regime, characteristic of bilayers in the gel phase. The theory is employed to study the line shapes of bis(verdazyl) biradicals, incorporated into oriented multibilayers of dimyristoylphosphatidylcholine. Computer simulations of the angular-dependent spectra provide the orientational distribution functions and rotational correlation times of the spin probes. They occupy two different sites in bilayer membrane. The orientational distribution of the spin probes is related to the structure of the phospholipid phases. In the L beta' phase the hydrocarbon chains are uniformly tilted by delta = 23 degrees with respect to the bilayer normal. For the P beta' phase we observe a random distribution of tilt angles from delta = 0 degree to delta = 19 degrees, indicating that the chains orient perpendicular to the local (rippled) bilayer surfaces. This structure has not been established previously. In agreement with other studies we find no tilt for the L alpha phase. The order parameters of the hydrocarbon chains increase with decreasing temperature, jumping from S less than or equal to 0.6 to S greater than or equal to 0.8 at the main transition. From the rotational correlation times of the spin probes, intrinsic bilayer viscosities of 0.08 P less than or equal to eta less than or equal to 20 P (50 degrees C greater than or equal to T greater than or equal to 1 degree C) are determined. An Arrhenius plot provides activation energies of the viscous flow. The values increase from Evisc approximately 10 kcal/mol in the L alpha phase to Evisc approximately 18 kcal/mol in the L beta' phase.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
July 1985, Biochemistry,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
January 1990, Methods in enzymology,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
January 1974, Pathologia et microbiologia,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
September 1983, Archives of biochemistry and biophysics,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
November 1991, Chemistry and physics of lipids,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
March 2012, The journal of physical chemistry. B,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
November 1999, Journal of agricultural and food chemistry,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
November 1997, Biophysical journal,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
December 1973, Annals of the New York Academy of Sciences,
P Meier, and A Blume, and E Ohmes, and F A Neugebauer, and G Kothe
June 1976, Science (New York, N.Y.),
Copied contents to your clipboard!