A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. 1982

S M Halling, and N Kleckner

Transposon Tn10 inserts at many sites in the bacterial chromosome, but preferentially inserts at particular hotspots. We believe we have identified the target DNA signal responsible for this specificity. We have determined the DNA sequences of 11 Tn10 insertion sites and identified a particular 6 base pair (bp) symmetrical consensus sequence (GCTNAGC) common to those sites. The sequences at some sites differ from the consensus sequence but only in limited and well defined ways. The sequences at some sites differ from the consensus sequence than do sequences at other sites, and the consensus sequence and closely related sequences are generally absent from potential target regions where Tn10 is known not to insert. Other aspects of the target DNA can significantly influence the efficiency with which a particular target site sequence is used. The 6 bp consensus sequence is symmetrically located within the 9 bp target DNA sequence that is cleaved and duplicated during Tn10 insertion. This juxtaposition of recognition and cleavage sites plus the symmetry of the perfect consensus sequence suggest that the target DNA may be both recognized and cleaved by the symmetrically disposed subunits of a single protein, as suggested for type II restriction endonucleases. There is plausible homology between the consensus sequence and the very ends of Tn10, compatible with recognition of transposon ends and target DNA by the same protein. The sequences of actual insertion sites deviate from the perfect consensus sequence in a way which suggests that the 6 bp specificity determinant may be recognized through protein-DNA contacts along the major groove of the DNA double helix.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S M Halling, and N Kleckner
September 1992, Proceedings of the National Academy of Sciences of the United States of America,
S M Halling, and N Kleckner
October 1994, Molecular microbiology,
S M Halling, and N Kleckner
January 1986, Gene,
Copied contents to your clipboard!