Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation. 1982

T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton

We have identified the single phosphorylated tyrosine in p60src, the transforming protein of Rous sarcoma virus, as part of the sequence. NH2-Arg-Leu-Ile-Glu-Asp-Asn-Glu-Tyr(P)-Thr-Ala-Arg-COOH. Therefore, this is a sequence that is recognized efficiently by a tyrosine protein kinase in vivo. Phosphorylation of tyrosine in cellular proteins appears to play a role in malignant transformation by four classes of genetically distinct RNA tumor viruses. Phosphorylated tyrosines in several other proteins resemble of the tyrosine in p60src in that they are located 7 residues to the COOH-terminal side of a basic amino acid and either 4 residues to the COOH-terminal side of, or in close proximity to, a glutamic acid residue. Therefore it is possible that these features play a role in the selection of sites of phosphorylation by some tyrosine protein kinases. However, several clear exceptions to this rule exist.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D000011 Abelson murine leukemia virus A replication-defective strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) capable of transforming lymphoid cells and producing a rapidly progressing lymphoid leukemia after superinfection with FRIEND MURINE LEUKEMIA VIRUS; MOLONEY MURINE LEUKEMIA VIRUS; or RAUSCHER VIRUS. Abelson Leukemia Virus,Leukemia Virus, Abelson,Virus, Abelson Leukemia
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001355 Alpharetrovirus A genus of the family RETROVIRIDAE with type C morphology, that causes malignant and other diseases in wild birds and domestic fowl. Avian Erythroblastosis Virus,Retroviruses Type C, Avian,Type C Avian Retroviruses,Avian Leukosis-Sarcoma Viruses,Erythroblastosis Virus, Avian,Retroviruses, ALV-Related,ALV-Related Retrovirus,ALV-Related Retroviruses,Alpharetroviruses,Avian Erythroblastosis Viruses,Avian Leukosis Sarcoma Viruses,Avian Leukosis-Sarcoma Virus,Erythroblastosis Viruses, Avian,Leukosis-Sarcoma Virus, Avian,Leukosis-Sarcoma Viruses, Avian,Retrovirus, ALV-Related,Retroviruses, ALV Related,Virus, Avian Erythroblastosis,Virus, Avian Leukosis-Sarcoma,Viruses, Avian Erythroblastosis,Viruses, Avian Leukosis-Sarcoma
D001358 Avian Sarcoma Viruses Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS. Avian Sarcoma Virus B77,Chicken Sarcoma Virus B77,Chicken Tumor 1 Virus,Fujinami sarcoma virus,Sarcoma Viruses, Avian,Avian Sarcoma Virus,Fujinami sarcoma viruses,Sarcoma Virus, Avian,Virus, Avian Sarcoma,Viruses, Avian Sarcoma,sarcoma virus, Fujinami,virus, Fujinami sarcoma,viruses, Fujinami sarcoma

Related Publications

T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
January 1966, Biokhimiia (Moscow, Russia),
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
September 2014, Journal of virology,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
June 1983, European journal of biochemistry,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
April 1984, The Journal of biological chemistry,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
February 1994, Biochemistry and molecular biology international,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
January 2007, Nucleic acids research,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
January 2009, Methods in molecular biology (Clifton, N.J.),
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
January 2016, PloS one,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
October 1994, The Journal of biological chemistry,
T Patschinsky, and T Hunter, and F S Esch, and J A Cooper, and B M Sefton
February 1979, Psychological medicine,
Copied contents to your clipboard!