Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase. 1981

J P Malthouse, and G N George, and D J Lowe, and R C Bray

Different reduced forms of xanthine oxidase, labelled specifically in the cyanide-labile site with 33S, were prepared and examined by electron paramagnetic resonance. Coupling of this isotope to molybdenum(V) was quantified with the help of computer simulations and found to differ markedly from one reduced form to another. The xanthine Very Rapid signal shows strong, highly anisotropic, coupling with A(33S)av. 1.27 mT. For this signal, axes of the g- and A(33S)-tensors are rotated relative to one another. One axis of the A-tensor is in the plane of gxx ang gyy, but rotated by 40 degrees relative to the gxx axis, whereas the direction of weakest coupling to sulphur deviates by 10 degrees from the gzz axis. In contrast with this signal, only rather weaker coupling was observed in different types of Rapid signal [A(33S)av. 0.3--0.4 mT], and in the Inhibited signal coupling was weaker still [A(33S)av. 0.1--0.2 mT]. Clearly, there must be substantial differences in the structures of the molybdenum centre in the different signal-giving species, with the sulphur atom perhaps in an equatorial type of ligand position in the Very Rapid species but in a more axial one in the other species. Structures are discussed in relation to the mechanism of action of the enzyme and the nature of the proton-accepting group that participates in turnover.

UI MeSH Term Description Entries
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D013460 Sulfur Isotopes Stable sulfur atoms that have the same atomic number as the element sulfur, but differ in atomic weight. S-33, 34, and 36 are stable sulfur isotopes. Isotopes, Sulfur
D014969 Xanthine Oxidase An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria. Hypoxanthine Oxidase,Hypoxanthine Dehydrogenase,Hypoxanthine-Xanthine Oxidase,Purine-Xanthine Oxidase,Dehydrogenase, Hypoxanthine,Hypoxanthine Xanthine Oxidase,Oxidase, Hypoxanthine,Oxidase, Hypoxanthine-Xanthine,Oxidase, Purine-Xanthine,Oxidase, Xanthine,Purine Xanthine Oxidase
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

J P Malthouse, and G N George, and D J Lowe, and R C Bray
July 1990, Biochemistry,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
March 1978, The Biochemical journal,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
April 1991, Biochemistry,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
August 1976, The Biochemical journal,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
May 1954, Annals of the New York Academy of Sciences,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
October 1969, The Biochemical journal,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
April 1968, The Biochemical journal,
J P Malthouse, and G N George, and D J Lowe, and R C Bray
March 2013, Dalton transactions (Cambridge, England : 2003),
Copied contents to your clipboard!