Nucleotide sequence of simian virus 40 DNA: structure of the middle segment of the HindII + III restriction fragment B (sixth part of the T antigen gene) and codon usage. 1980

H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers

We report here the nucleotide sequence of the simian virus 40 DNA region that lies between the EcoRII restriction endonuclease cleavage sites at map positions 0.214 and 0.281. The sequence was determined by partial chemical degradation of terminally labeled DNA fragments according to the procedure of Maxam and Gilbert. This region represents 6.7% of the SV40 genome and is located in the middle of HindII + III restriction fragment B. It is expressed as part of the early 19-S messenger RNA, which codes for the large-T antigen protein. Only one open reading frame for translation can be deduced from the message strand of the DNA and this reading frame connects in phase with the one of both neighboring fragments. This publication is the last in a series of papers about the T-antigen gene, and several properties of this gene and its product are discussed. The non-randomness of codon usage is similar to that previously discussed for the late part of the genome. Moreover, it appears that the choice of a third letter can be determined by the nature of the following codon; some codons which start with a pyrimidine are almost never preceded by an adenosine and some ANN-type codons are almost never preceded by a guanosine.

UI MeSH Term Description Entries
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D000957 Antigens, Viral, Tumor Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation. Antigens, Neoplasm, Viral,Neoplasm Antigens, Viral,T Antigens,Tumor Antigens, Viral,Viral Tumor Antigens,Virus Transforming Antigens,Large T Antigen,Large T-Antigen,Small T Antigen,Small T-Antigen,T Antigen,T-Antigen,Viral T Antigens,Antigen, Large T,Antigen, Small T,Antigen, T,Antigens, T,Antigens, Viral Neoplasm,Antigens, Viral T,Antigens, Viral Tumor,Antigens, Virus Transforming,T Antigen, Large,T Antigen, Small,T Antigens, Viral,T-Antigen, Large,T-Antigen, Small,Transforming Antigens, Virus,Viral Neoplasm Antigens
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
October 1981, The Journal of biological chemistry,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
September 1974, Proceedings of the National Academy of Sciences of the United States of America,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
December 1984, Journal of molecular biology,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
June 1979, Journal of virology,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
February 1979, Proceedings of the National Academy of Sciences of the United States of America,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
November 1977, Journal of virology,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
August 1983, Journal of virology,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
December 1982, Journal of virology,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
September 1976, Proceedings of the National Academy of Sciences of the United States of America,
H Van Heuverswyn, and A Van de Voorde, and J Van Herreweghe, and G Volckaert, and P De Winne, and W Fiers
January 1979, Journal of virology,
Copied contents to your clipboard!