Intramuscular and intravenous pharmacokinetics of cefmenoxime, a new broad-spectrum cephalosporin, in healthy subjects. 1982

G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders

This study was concerned with the single-dose, pharmacokinetics of cefmenoxime after intramuscular (i.m.) injections of 250, 500 and 1,000 mg; 1-h intravenous (i.v.) infusions of 500, 1,000, and 2,000 mg; and 5-min i.v. injections of 500, 1,000, and 2,000 mg of cefmenoxime. A total of 15 subjects were used, each receiving all three doses for one route of administration. Mean calculated peak plasma levels after the 250-, 500-, and 1,000-mg i.m. doses were 9.07, 14.68, and 26.73 micrograms/ml, respectively, occurring about 40 min after dosing. The biphasic decline in plasma levels after i.v administration was usually not apparent after i.m. dosing, because absorption of the drug from the injection depot was slower than distribution of the drug. Mean calculated peak levels from the 500-, 1,000-, and 2,000-mg i.v. doses were 22.8, 41.6, and 94.5 micrograms/ml, respectively, after the 1-h infusions and 64.1, 100.9, and 198.2 micrograms/ml, respectively after the 5-min injections. Small but statistically significant trends of decreasing alpha and increasing volume of distribution (central compartment) with increasing dose size were noted; however, this distribution phenomenon was self-compensating, resulting in no overall effect on plasma clearance. For practical purposes, the pharmacokinetics were linear. The mean 0- to 24-h urinary recoveries of cefmenoxime after the i.m. injections, i.v. infusions, and i.v. injections were 72.1, 67.5, and 74.5% respectively. Overall, the pharmacokinetics of cefmenoxime were best described by a two-compartment open model with a beta-phase half life of 0.91 h. Plasma clearance of the drug was dosage level and route independent, averaging 254 ml/min; thus, there was an excellent linear relationship between the area under the plasma level curve and the dose. The results of this study indicated that most of the drug is removed by renal mechanisms, with tubular secretion predominating.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007273 Injections, Intramuscular Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it. Intramuscular Injections,Injection, Intramuscular,Intramuscular Injection
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002439 Cefotaxime Semisynthetic broad-spectrum cephalosporin. Benaxima,Biosint,Cefotaxim,Cefotaxime Sodium,Cefradil,Cephotaxim,Claforan,Fotexina,HR-756,Kendrick,Klaforan,Primafen,Ru-24756,Taporin,HR 756,HR756,Ru 24756,Ru24756,Sodium, Cefotaxime
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
June 1982, Antimicrobial agents and chemotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
January 1987, European journal of clinical pharmacology,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
July 2004, Antimicrobial agents and chemotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
July 2004, Antimicrobial agents and chemotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
July 2009, Expert opinion on pharmacotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
February 1977, Antimicrobial agents and chemotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
March 2011, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
January 1985, Pediatric infectious disease,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
January 1981, Antimicrobial agents and chemotherapy,
G R Granneman, and L T Sennello, and F J Steinberg, and R C Sonders
August 1980, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!