A comparison of the phage T4 gene 32 protein and Escherichia coli RNA polymerase binding sites on hamster papovavirus DNA. 1982

F Vogel, and S Scherneck

Phage T4 gene 32 protein and Escherichia coli RNA polymerase were bound to hamster papovavirus DNA. The binding regions were identified by electron microscopy employing a protein-free spreading technique. After gene 32 protein treatment four denaturation regions could be mapped, at 0.04-0.12, 0.30-0.36, 0.50-0.60 and 0.75-0.90 DNA map units, respectively, using the unique BamHI cleavage site as zero point. Eight RNA polymerase binding sites can be found which are localized at positions 0.05; 0.11; 0.18; 0.31; 0.57; 0.66; 0.76 and 0.82. A comparison of the RNA polymerase binding sites with the gene 32 protein denaturation pattern reveals a correspondence of six of eight polymerase binding sites with (A+T)-rich regions within the hamster papovavirus genome.

UI MeSH Term Description Entries
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D027382 Polyomaviridae A family of small, non-enveloped DNA viruses, infecting mainly MAMMALS. Alphapolyomavirus,Betapolyomavirus,Deltapolyomavirus,Gammapolyomavirus,Alphapolyomaviruses,Betapolyomaviruses,Deltapolyomaviruses,Gammapolyomaviruses
D027383 Papillomaviridae A family of small, non-enveloped DNA viruses infecting birds and most mammals, especially humans. They are grouped into multiple genera, but the viruses are highly host-species specific and tissue-restricted. They are commonly divided into hundreds of papillomavirus "types", each with specific gene function and gene control regions, despite sequence homology. Human papillomaviruses are found in the genera ALPHAPAPILLOMAVIRUS; BETAPAPILLOMAVIRUS; GAMMAPAPILLOMAVIRUS; and MUPAPILLOMAVIRUS.

Related Publications

F Vogel, and S Scherneck
May 1971, Biochimica et biophysica acta,
F Vogel, and S Scherneck
January 1983, Molecular & general genetics : MGG,
F Vogel, and S Scherneck
January 1985, The Journal of biological chemistry,
F Vogel, and S Scherneck
September 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!