Determination of the transcription direction of the exuT gene in Escherichia coli K-12: divergent transcription of the exuT-uxaCA operons. 1982

N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy

The exuT gene of Escherichia coli, coding for the hexuronate transport system, was fused to lac genes by the use of Mu d(Apr lac) insertions (M. J. Casadaban and S. Cohen, Proc. Natl. Acad. Sci. U.S.A. 76:4530-4533, 1979). The method of chromosome mobilization with F' lac::Mu episomes (J. B. Zeldis, A. I. Bukhari, and D. Zipser, Virology 55:289-294, 1974) made it possible to determine the transcription direction of the exuT gene from the orientation of the Mu d(Apr lac) insertion in the fusion strains. Our results for a exuT-lac fusion strain suggest that the direction of transcription of other single gene operon exuT is clockwise on the standard E. coli map and confirm that the direction of transcription of uxaC is counterclockwise. The two close operons exuT and uxaCA are thus transcribed in opposite directions.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006603 Hexuronic Acids Term used to designate tetrahydroxy aldehydic acids obtained by oxidation of hexose sugars, i.e. glucuronic acid, galacturonic acid, etc. Historically, the name hexuronic acid was originally given to ascorbic acid. Hexouronic Acids,Acids, Hexouronic,Acids, Hexuronic
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
May 1977, Journal of bacteriology,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
November 1989, Journal of bacteriology,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
May 2003, Journal of bacteriology,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
November 1990, Journal of bacteriology,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
January 1980, Molecular & general genetics : MGG,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
May 1978, Gene,
N Hugouvieux-Cotte-Pattat, and J Robert-Baudouy
March 1986, Journal of bacteriology,
Copied contents to your clipboard!