Role of exogenous cholesterol in regulation of adrenal steroidogenesis in the rat. 1982

A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven

Rat steroidogenic tissues take up cholesterol, and it has been suggested that this process plays a regulatory role in steroid hormone synthesis. To provide evidence for this hypothesis, we carried out studies in lipoprotein-deficient rats. Lipoprotein deficiency, achieved by treating male rats with pharmacological amounts of estradiol, led to profound lowering of plasma cholesterol (8 +/- 2 versus 54 +/- 4 mg/dl) and adrenal cholesteryl ester content (113 +/- 57 versus 747 +/- 108 micrograms/organ). Basal serum corticosterone levels were decreased by 50%, and the response to adrenocorticotropic hormone (ACTH) was totally abolished. Injection of high density lipoprotein (HDL) to estradiol-treated animals restored the response of corticosterone to ACTH. Comparable in vitro studies with adrenal cell suspensions obtained from lipoprotein-deficient rats confirmed the in vivo data. Measurement of [14C]acetate incorporation and uptake of both HDL- and low density lipoprotein (LDL)-cholesterol in these adrenal cells showed a progressive increase with the duration of estradiol treatment, and neither of these two phenomena was altered by ACTH. These results provide in vitro and in vivo evidence for the hypothesis that normal adrenal steroidogenesis depends upon cholesterol delivery from plasma. Furthermore, under the conditions studied, ACTH does not stimulate adrenal de novo cholesterol biosynthesis nor the uptake of either HDL- or LDL-cholesterol.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal

Related Publications

A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
November 1980, The Journal of biological chemistry,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
January 1994, Proceedings of the National Academy of Sciences of the United States of America,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
March 2024, Endocrinology,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
October 2005, Peptides,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
January 1999, The Journal of steroid biochemistry and molecular biology,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
January 1987, The Journal of clinical endocrinology and metabolism,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
September 1974, FEBS letters,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
January 1971, Biology of the neonate,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
April 1978, Molecular and cellular endocrinology,
A H Verschoor-Klootwyk, and L Verschoor, and S Azhar, and G M Reaven
November 2002, Endocrine research,
Copied contents to your clipboard!