Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. 1982

S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy

Triglyceride-rich lipoproteins may be responsible for the lipid accumulation in macrophages that can occur in hypertriglyceridemia. Chylomicrons and very low density lipoproteins (VLDL, total and with flotation constant [S(f)] 100-400) from fasting hypertriglyceridemic subjects induced a massive accumulation of oil red O-positive inclusions in unstimulated peritoneal macrophages. Cell viability was not affected. The predominant lipid that accumulated in cells exposed to hypertriglyceridemic VLDL was triglyceride. Hypertriglyceridemic VLDL stimulated the incorporation of [(14)C]oleate into cellular triglyceride up to ninefold in 16 h, but not into cholesteryl esters. Mass increase in cellular triglyceride was 38-fold. The stimulation of cellular triglyceride formation was dependent on time, temperature, and concentration of hypertriglyceridemic VLDL. By contrast, VLDL, low density, and high density lipoproteins from fasting normolipemic subjects had no significant effect on oleate incorporation into neutral lipids or on visible lipid accumulation.(125)I-Hypertriglyceridemic VLDL (S(f) 100-400) were degraded by macrophages in a dose-dependent manner, with 50 and 100% saturation observed at 3 and 24 mug protein/ml (2.5 and 20 nM), respectively. Hypertriglyceridemic VLDL inhibited the internalization and degradation of (125)I-hypertriglyceridemic VLDL (4 nM) by 50% at 3 nM. Cholesteryl ester-rich VLDL from cholesterol-fed rabbits gave 50% inhibition at 5 nM. Low density lipoproteins (LDL) inhibited by 10% at 5 nM and 40% at 47 nM. Acetyl LDL at 130 nM had no effect. We conclude that the massive triglyceride accumulation produced in macrophages by hypertriglyceridemic VLDL is a direct consequence of uptake via specific receptors that also recognize cholesteryl ester-rich VLDL and LDL but are distinct from the acetyl LDL receptor. Uptake of these triglyceride-rich lipoproteins by monocyte-macrophages in vivo may play a significant role in the pathophysiology of atherosclerosis.

UI MeSH Term Description Entries
D006953 Hyperlipoproteinemia Type IV A hypertriglyceridemia disorder, often with autosomal dominant inheritance. It is characterized by the persistent elevations of plasma TRIGLYCERIDES, endogenously synthesized and contained predominantly in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). In contrast, the plasma CHOLESTEROL and PHOSPHOLIPIDS usually remain within normal limits. Hyperprebetalipoproteinemia,Hypertriglyceridemia, Familial,Carbohydrate Inducible Hyperlipemia,Carbohydrate-Inducible Hyperlipemia,Familial Hyperlipoproteinemia Type 4,Familial Type IV Hyperlipoproteinemia,Hyper prebeta lipoproteinemia,Hyperlipoproteinemia, Type IV,Carbohydrate Inducible Hyperlipemias,Carbohydrate-Inducible Hyperlipemias,Familial Hypertriglyceridemia,Hyperlipemia, Carbohydrate Inducible,Hyperlipemia, Carbohydrate-Inducible,Hyperlipemias, Carbohydrate Inducible,Hyperlipemias, Carbohydrate-Inducible,Hyperlipoproteinemias, Type IV,Inducible Hyperlipemia, Carbohydrate,Inducible Hyperlipemias, Carbohydrate,Type IV Hyperlipoproteinemia,Type IV Hyperlipoproteinemias,Type IV, Hyperlipoproteinemia
D006954 Hyperlipoproteinemia Type V A severe type of hyperlipidemia, sometimes familial, that is characterized by the elevation of both plasma CHYLOMICRONS and TRIGLYCERIDES contained in VERY-LOW-DENSITY LIPOPROTEINS. Type V hyperlipoproteinemia is often associated with DIABETES MELLITUS and is not caused by reduced LIPOPROTEIN LIPASE activity as in HYPERLIPOPROTEINEMIA TYPE I . Hyperchylomicronemia Late Onset,Hyperchylomicronemia With Hyperprebetalipoproteinemia, Familial,Hyperchylomicronemia, Late-Onset,Hyperlipemia, Combined Fat And Carbohydrate-Induced,Hyperlipemia, Mixed,Hyperlipidemia, Type V,Hyperlipoproteinemia Type 5,Hyperlipoproteinemia, Type V,Hyperchylomicronemia Late Onsets,Hyperchylomicronemia, Late Onset,Hyperchylomicronemias, Late-Onset,Hyperlipemia, Combined Fat And Carbohydrate Induced,Hyperlipemias, Mixed,Hyperlipidemias, Type V,Hyperlipoproteinemia Type 5s,Hyperlipoproteinemias, Type V,Late-Onset Hyperchylomicronemia,Late-Onset Hyperchylomicronemias,Mixed Hyperlipemia,Mixed Hyperlipemias,Type V Hyperlipidemia,Type V Hyperlipidemias,Type V Hyperlipoproteinemia,Type V Hyperlipoproteinemias
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol

Related Publications

S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
January 1984, Arteriosclerosis (Dallas, Tex.),
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
November 1994, Biochemical and biophysical research communications,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
September 1983, The Journal of clinical investigation,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
December 1984, The Journal of clinical investigation,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
September 1979, Biochimica et biophysica acta,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
January 1979, Nutrition reviews,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
December 1998, Atherosclerosis,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
January 1983, Acta Academiae Medicinae Wuhan = Wu-han i hsueh yuan hsueh pao,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
August 1986, The Journal of biological chemistry,
S H Gianturco, and W A Bradley, and A M Gotto, and J D Morrisett, and D L Peavy
January 2016, Scientific reports,
Copied contents to your clipboard!