The effects of microstimulation and microlesions in the ventral and dorsal respiratory groups in medulla of cat. 1982

D F Speck, and J L Feldman

The responses in respiratory outflow resulting from microstimulation and successive microlesions of the dorsal (DRG) and ventral (VRG) respiratory groups of neurons in the brainstem were studied in anesthetized, paralyzed, artificially ventilated cats. Microstimulation (2 to 120 Hz; 5 to 50 microA; 100 musec pulse duration) at almost every point within the DRG or VRG produced a bilateral short latency inhibition of phrenic nerve activity which had an onset latency of 4 to 9 msec and a duration of 4 to 24 msec. This global stereotyped phrenic inhibition was elicited by single pulses and often was accompanied by a postinhibitory excitation. In 48% (92/193) of the stimulation trials, trains of stimulus pulses during inspiration decreased the duration of inspiration. In 25% of the expiratory microstimulation trials, expiratory duration was increased and in 11%, expiration was shortened markedly by trains of pulses. Single shocks delivered to the right VRG or DRG produced a short latency excitation in the ipsilateral recurrent laryngeal nerve (RRL). This RRL excitation had an onset latency of 2 to 5 msec and a duration of 3 to 15 msec. Evidence suggests that the RRL excitation is due to a paucisynaptic activation of expiratory motoneurons in the caudal VRG. This activation is synchronous with the inhibition of inspiratory neurons in DRG and VRG. Despite the powerful short latency effects of microstimulation in VRG and DRG, extensive bilateral destruction of these neuronal populations had only modest effects on respiratory rhythm, while it decreased (or abolished) respiratory outflow in phrenic and recurrent laryngeal nerves. The combined results of the microstimulation and microlesion portions of this study suggest that a region (or regions) outside of the DRG and VRG might be important in the control of the respiratory pattern and that the DRG and VRG are important in determining the depth of inspiration; their role in generating respiratory rhythm needs to be critically re-examined.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012009 Recurrent Laryngeal Nerve Branches of the vagus (tenth cranial) nerve. The recurrent laryngeal nerves originate more caudally than the superior laryngeal nerves and follow different paths on the right and left sides. They carry efferents to all muscles of the larynx except the cricothyroid and carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions. Laryngeal Nerve, Inferior,Inferior Laryngeal Nerve,Inferior Laryngeal Nerves,Laryngeal Nerve, Recurrent,Laryngeal Nerves, Inferior,Laryngeal Nerves, Recurrent,Nerve, Inferior Laryngeal,Nerve, Recurrent Laryngeal,Nerves, Inferior Laryngeal,Nerves, Recurrent Laryngeal,Recurrent Laryngeal Nerves
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat

Related Publications

D F Speck, and J L Feldman
September 1987, Brain research,
D F Speck, and J L Feldman
September 1980, Pflugers Archiv : European journal of physiology,
D F Speck, and J L Feldman
June 1980, Brain research,
D F Speck, and J L Feldman
August 1996, The Journal of comparative neurology,
D F Speck, and J L Feldman
January 1987, Journal of neuroscience methods,
Copied contents to your clipboard!