Dynorphin-(1-13), dopamine and feeding in rats. 1982

J E Morley, and A S Levine, and M Grace, and J Kneip

Intraventricular administration of the dopamine agonist, bromergocryptine, reliably induces feeding over a narrow dose range with a bell-shaped curve. Bromergocryptine (80 micrograms) induced feeding is inhibited by the dopamine antagonist, haloperidol (0.5 mg/kg) and the opiate antagonist, naloxone (10 and 1 mg/kg). The leucine-enkephalin containing opioid peptide, dynorphin-(1-13) induces feeding which is inhibited by haloperidol (0.5 and 0.1 mg/kg) and by naloxone (1 mg/kg). Of the common satiety factors tested only bombesin (10 micrograms/kg subcutaneously) inhibited both dynorphin-(1-13) and bromergocryptine induced feeding. Cholecystokinin-octapeptide (10 and 20 micrograms/kg, subcutaneously), thyrotropin-releasing hormone (10 and 20 micrograms), ICV) and calcitonin (1 unit, ICV) all failed to inhibit dynorphin-(1-13)-induced feeding. Calcitonin and CCK-8 but not TRH inhibited bromergocryptine-induced feeding. These studies have demonstrated the close interaction between dopaminergic an dopiate systems in the regulation of food intake. The concept of dopamine being primarily responsible for the initiation of chewing behavior and the opiates regulating food ingestion is compatible with the observations reported here.

UI MeSH Term Description Entries
D008297 Male Males
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001971 Bromocriptine A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion. 2-Bromoergocryptine,Bromocryptin,2-Bromo-alpha-ergocryptine,2-Bromo-alpha-ergokryptine,2-Bromoergocryptine Mesylate,2-Bromoergocryptine Methanesulfonate,2-Bromoergokryptine,Bromocriptin,Bromocriptine Mesylate,CB-154,Parlodel,2 Bromo alpha ergocryptine,2 Bromo alpha ergokryptine,2 Bromoergocryptine,2 Bromoergocryptine Mesylate,2 Bromoergocryptine Methanesulfonate,2 Bromoergokryptine,CB 154,CB154,Mesylate, 2-Bromoergocryptine,Mesylate, Bromocriptine,Methanesulfonate, 2-Bromoergocryptine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes

Related Publications

J E Morley, and A S Levine, and M Grace, and J Kneip
January 1988, Life sciences,
J E Morley, and A S Levine, and M Grace, and J Kneip
May 1985, European journal of pharmacology,
J E Morley, and A S Levine, and M Grace, and J Kneip
July 1983, Acta endocrinologica,
J E Morley, and A S Levine, and M Grace, and J Kneip
January 1982, Life sciences,
J E Morley, and A S Levine, and M Grace, and J Kneip
October 1993, Brain research,
J E Morley, and A S Levine, and M Grace, and J Kneip
January 1987, Peptides,
J E Morley, and A S Levine, and M Grace, and J Kneip
May 2004, Die Pharmazie,
J E Morley, and A S Levine, and M Grace, and J Kneip
November 1987, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!