Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types. 1982

G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti

1. Microsomes were isolated from rabbit fast-twitch and slow-twitch muscle and were separated into heavy and light fractions by centrifugation in a linear (0.3-2m) sucrose density gradient. The membrane origin of microsomal vesicles was investigated by studying biochemical markers of the sarcoplasmic-reticulum membranes and of surface and T-tubular membranes, as well as their freeze-fracture properties. 2. Polyacrylamide-gel electrophoresis showed differences in the Ca(2+)-dependent ATPase/calsequestrin ratio between heavy and light fractions, which were apparently consistent with their respective origin from cisternal and longitudinal sarcoplasmic reticulum, as well as unrelated differences, such as peptides specific to slow-muscle microsomes (mol.wts. 76000, 60000, 56000 and 45000). 3. Freeze-fracture electron microscopy of muscle microsomes demonstrated that vesicles truly derived from the sarcoplasmic reticulum, with an average density of 9nm particles on the concave face of about 3000/mum(2) for both fast and slow muscle, were admixed with vesicles with particle densities below 1000/mum(2). 4. As determined in the light fractions, the sarcoplasmic-reticulum vesicles accounted for 84% and 57% of the total number of microsomal vesicles, for fast and slow muscle respectively. These values agreed closely with the percentage values of Ca(2+)-dependent ATPase protein obtained by gel densitometry. 5. The T-tubular origin of vesicles with a smooth concave fracture face in slow-muscle microsomes is supported by their relative high content in total phospholipid and cholesterol, compared with the microsomes of fast muscle, and by other correlative data, such as the presence of (Na(+)+K(+))-dependent ATPase activity and of low amounts of Na(+)-dependent membrane phosphorylation. 6. Among intrinsic sarcoplasmic-reticulum membrane proteins, a proteolipid of mol.wt. 12000 is shown to be identical in the microsomes of both fast and slow muscle and the Ca(2+)-dependent ATPase to be antigenically and catalytically different, though electrophoretically homogeneous. 7. Basal Mg(2+)-activated ATPase activity was found to be high in light microsomes from slow muscle, but its identification with an enzyme different from the Ca(2+)-dependent ATPase is still not conclusive. 8. Enzyme proteins that are suggested to be specific to slow-muscle longitudinal sarcoplasmic reticulum are the flavoprotein NADH:cytochrome b(5) reductase (mol.wt. 32000), cytochrome b(5) (mol.wt. 17000) and the stearoyl-CoA desaturase, though essentially by criteria of plausibility.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density

Related Publications

G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
June 1994, Pflugers Archiv : European journal of physiology,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
June 1993, Journal of anatomy,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
August 2003, Acta physiologica Scandinavica,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
November 1976, Histochemistry,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
August 2004, Anatomia, histologia, embryologia,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
August 2010, Acta physiologica (Oxford, England),
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
January 1998, Advances in experimental medicine and biology,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
January 1993, European journal of applied physiology and occupational physiology,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
January 1998, Histology and histopathology,
G Salviati, and P Volpe, and S Salvatori, and R Betto, and E Damiani, and A Margreth, and I Pasquali-Ronchetti
January 1981, Experientia,
Copied contents to your clipboard!