Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins. 1982

T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi

Band 3 protein was isolated from human erythrocyte membranes, purified, and reconstituted into a well-defined phospholipid bilayer matrix (dimyristoylphosphatidylcholine). The preparation yielded uniform single-bilayered vesicles of the diameter 40--80 nm. The rotational motion of band 3 was studied by saturation transfer electron spin resonance (ESR) spectroscopy of covalently attached maleimide spin-labels. The rotational mobility changed in response to the host lipid phase transition. The rotational correlation time was in a range from 73 (37 degrees C) to 94 microseconds (26 degrees C) in the fluid phase and from 240 (15 degrees C) to 420 microseconds (5 degrees C) in the solid phase. The motion was analyzed based on the anisotropic rotation of band 3 in the reconstituted vesicles. To obtain information on the rotational diffusion constant around the axis parallel to the membrane normal, we made an attempt to measure the angle between the spin-label magnetic axis and the membrane normal. The result gave 3.9 x 10(4) s-1 at 37 degrees C as a rough estimate for the diffusion constant. This is compatible to anisotropic rotation of a cylinder of radius 3.3 nm in a two-dimensional matrix with inner viscosity 2 P and inner thickness 4 nm. The cytoskeletal peripheral proteins caused a definite increase in the rotational correlation time (from 73 to 180 microseconds at 37 degrees C, for example). The restriction of the rotational mobility was shown to be due to the ankyrin-linked interaction between band 3 and spectrin-actin-band 4.1 proteins in the reconstituted membranes.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
January 1992, Biochemistry,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
May 1989, Biochimica et biophysica acta,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
October 1990, Biochemical Society transactions,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
September 1976, Nature,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
July 1977, Nature,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
January 1981, Biochemical Society symposium,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
February 1985, Biochemistry,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
November 1992, Biochemical Society transactions,
T Sakaki, and A Tsuji, and C H Chang, and S Ohnishi
May 2003, Blood,
Copied contents to your clipboard!