Subunit structure of Escherichia coli exonuclease VII. 1982

L D Vales, and B A Rabin, and J W Chase

Exonuclease VII has been purified 7,500-fold to 87% homogeneity from Escherichia coli K12 using a new purification procedure. The enzyme has been shown to be composed of two nonidentical subunits of 10,500 and 54,000 daltons. This has been confirmed by restoration of exonuclease VII activity after renaturation of denatured and purified subunits. The structure of the native enzyme consists of one large subunit and four small subunits. We have previously isolated exonuclease VII mutant strains containing defects which map at two distinct loci. Subunit-mixing experiments utilizing wild type enzyme and temperature-sensitive enzyme produced by an xseB mutant strain have shown that the xseB gene codes for the small subunit of the enzymes.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

L D Vales, and B A Rabin, and J W Chase
January 2024, Proceedings of the National Academy of Sciences of the United States of America,
L D Vales, and B A Rabin, and J W Chase
January 1975, Basic life sciences,
L D Vales, and B A Rabin, and J W Chase
February 1977, Journal of bacteriology,
L D Vales, and B A Rabin, and J W Chase
July 1974, The Journal of biological chemistry,
L D Vales, and B A Rabin, and J W Chase
July 1974, The Journal of biological chemistry,
L D Vales, and B A Rabin, and J W Chase
November 1986, The Journal of biological chemistry,
L D Vales, and B A Rabin, and J W Chase
December 2015, Journal of microbiology (Seoul, Korea),
L D Vales, and B A Rabin, and J W Chase
January 1981, Gene amplification and analysis,
L D Vales, and B A Rabin, and J W Chase
April 1974, Biochimica et biophysica acta,
L D Vales, and B A Rabin, and J W Chase
October 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!