The transition from HK to LK phenotype in the red cells of newborn genetically LK lambs. 1982

E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham

Red cells from newborn lambs were separated into different age populations by centrifugation, and cells with fetal hemoglobin (Hb) were distinguished from those with adult Hb by an acid elution technique. Changes were followed during development in rates of K+ transport (active and passive), numbers of Na+/K+ pump sites per cell, cell volumes, and numbers of Lp and L1 antigen sites per cell. These changes were correlated with the percentage of cells with adult hemoglobin. (The Lp and L1 antigens are associated with K+ transport in that specific alloantibody against Lp, anti-Lp, stimulates active transport, and anti-L1 inhibits passive transport.) Active K+ transport decreased during development because of a decline in number of Na+/K+ pumps (from measurements of ouabain binding) and because of an alteration in the affinity of the pumps for intracellular K+ (from kinetic studies in which the intracellular K+ concentration was varied). Cells with fetal Hb had fewer Lp sites and were larger than cells with adult Hb. As transport properties changed, the number of Lp sites increased and continued to increase after all the cells had adult Hb Cells with fetal Hb had as many L1 sites as lamb cells with adult Hb, but the number of L1 sites was less than those found previously for adult sheep. A population of small cells with intermediate K+ concentration and intermediate numbers of Lp sites appeared soon after birth. The various points of evidence suggested that the developmental process leading to cells with adult transport properties was a gradual one and did not coincide precisely with the switch from fetal to adult Hb.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
August 1971, Biochimica et biophysica acta,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
March 1972, The Journal of general physiology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
November 1974, The Journal of general physiology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
May 1972, Biochimica et biophysica acta,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
December 1969, The Journal of membrane biology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
December 1967, The Journal of general physiology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
July 1967, The Journal of general physiology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
January 1987, Comparative biochemistry and physiology. A, Comparative physiology,
E M Tucker, and C E Smalley, and J C Ellory, and P B Dunham
September 1969, Lipids,
Copied contents to your clipboard!