Synthesis of vesicular stomatitis virus negative-strand RNA in vitro: dependence on viral protein synthesis. 1982

N L Davis, and G W Wertz

An in vitro system is described which supports the synthesis of vesicular stomatitis virus (VSV) negative-strand RNA. The major components of this system are (i) an mRNA-dependent rabbit reticulocyte lysate to carry out cell-free protein synthesis, (ii) the five VSV mRNAs to program VSV-specific protein synthesis, and (iii) nucleocapsids containing positive- and negative-strand genome-length RNA. The protein products synthesized in the system in response to addition of saturating amounts of the five VSV mRNA's included polypeptides which comigrated in acrylamide gels with the five VSV proteins. Approximately 200 pmol of protein per ml was synthesized during a 90-min reaction. The RNA products synthesized in the system included all five of the VSV mRNA's and, in addition, negative-strand, genome-sense RNA. All of the negative-strand RNA, which represented 2 to 5% of the total RNA product synthesized in vitro, banded in CsCl at the position of nucleocapsids. All of the mature mRNA's made in the system pelleted in CsCl. This technique allowed a clear separation of negative-strand product from the mRNA products and facilitated further analysis of the negative-strand product. The amount of negative-strand product produced in the system was shown to be a function of the amount of concurrent protein synthesis in the system. An increase in the level of protein synthesis led to an increase in the amount of negative-strand RNA synthesized, whereas inhibition of protein synthesis by cycloheximide resulted in a 70% inhibition of negative-strand synthesis. In contrast to the negative-strand RNA product, the amount of transcriptive product was decreased by 50% in the presence of maximum levels of viral protein synthesis. This inhibition was reversed by adding cycloheximide. Characterization of the negative-strand product by Northern blot analysis demonstrated that negative-strand product was being synthesized which hybridized to all five of the VSV mRNA's and, hence, that product representing all of the VSV cistrons was being made. This in vitro system offers an opportunity to study factors involved in the promotion of VSV genome replication as well as those responsible for the regulation of transcription.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014721 Vesicular stomatitis Indiana virus The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms. Vesicular stomatitis-Indiana virus
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

N L Davis, and G W Wertz
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
N L Davis, and G W Wertz
December 1973, Journal of virology,
N L Davis, and G W Wertz
March 2019, Journal of virology,
N L Davis, and G W Wertz
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
N L Davis, and G W Wertz
January 1977, Journal of virology,
Copied contents to your clipboard!