Transformation of Streptococcus sanguis (Challis) by linear plasmid molecules. 1982

H Malke, and D Noack, and S E Holm

The streptococcal erythromycin resistance plasmid pSM9 was used to study the problem of how the transforming activity of mixtures of two unique linear products of restriction enzyme digestion depends on the distance between the cleavage sites. In transformation of the Challis strain of S. sanguis, the transforming activity of mixed digests increased with increasing relative distances (x) between the restriction sites, where 0 less than or equal to X less than or equal to 0.5. To explain the experimental results, a mathematical model was proposed according to which the overall probability (p) of transformation resulting in a functional replicon is the product of the partial probabilities of initial single-strand pairing, circularization, and stability of the paired intermediate, all of which were assumed to depend on x. A linear relationship found between transformation frequency and p was taken to support the model. Transformation of Challis by mixtures of two linearized plasmid molecules with regions of internal nonhomology resulting in paired intermediates with insertion or substitution loops allowed either donor molecule to contribute to the transformation yield.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D013291 Streptococcus A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

H Malke, and D Noack, and S E Holm
January 1981, Molecular & general genetics : MGG,
H Malke, and D Noack, and S E Holm
August 1984, Applied and environmental microbiology,
H Malke, and D Noack, and S E Holm
October 1976, Journal of bacteriology,
H Malke, and D Noack, and S E Holm
January 1990, Research in microbiology,
H Malke, and D Noack, and S E Holm
May 1981, Journal of bacteriology,
H Malke, and D Noack, and S E Holm
April 1990, Oral microbiology and immunology,
H Malke, and D Noack, and S E Holm
June 1970, Canadian journal of microbiology,
H Malke, and D Noack, and S E Holm
January 1985, Journal of the Oslo city hospitals,
H Malke, and D Noack, and S E Holm
September 1980, Journal of bacteriology,
Copied contents to your clipboard!