Enzymatic conversion of deoxycytidine 5'-monophosphate to 5-methyldeoxycytidine 5'-triphosphate. 1982

R Y Wang, and L H Huang, and M Ehrlich

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D009703 Nucleoside-Phosphate Kinase An enzyme that catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside monophosphate, e.g., UMP, to form ADP and UDP. Many nucleoside monophosphates can act as acceptor while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.4. Nucleoside Monophosphate Kinases,Kinase, Nucleoside-Phosphate,Kinases, Nucleoside Monophosphate,Monophosphate Kinases, Nucleoside,Nucleoside Phosphate Kinase
D003843 Deoxycytidine Monophosphate Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2'-,3'- or 5- positions. DCMP,Deoxycytidylic Acid,Deoxycytidylic Acids,Acid, Deoxycytidylic,Acids, Deoxycytidylic,Monophosphate, Deoxycytidine
D003845 Deoxycytosine Nucleotides Cytosine nucleotides which contain deoxyribose as the sugar moiety. Deoxycytidine Phosphates,Nucleotides, Deoxycytosine,Phosphates, Deoxycytidine
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014974 Xanthomonas A genus in the family XANTHOMONADACEAE whose cells produce a yellow pigment (Gr. xanthos - yellow). It is pathogenic to plants. Xanthomonas albilineans

Related Publications

R Y Wang, and L H Huang, and M Ehrlich
July 1960, Biochimica et biophysica acta,
R Y Wang, and L H Huang, and M Ehrlich
October 1980, Nucleic acids research,
R Y Wang, and L H Huang, and M Ehrlich
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
R Y Wang, and L H Huang, and M Ehrlich
October 1967, Biochemical and biophysical research communications,
R Y Wang, and L H Huang, and M Ehrlich
June 1957, The Journal of biological chemistry,
Copied contents to your clipboard!