Molecular cloning and characterization of ribosomal RNA genes from the brine shrimp. 1982

J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder

A library of genomic DNA from the brine shrimp, Artemia, has been constructed with the Charon 4A phage vector, utilizing EcoRI passenger fragments. Screening this library with purified Xenopus laevis cloned rDNA genes has resulted in the identification and plaque purification of a recombinant containing a complete Artemia (18 S + 26 S) rDNA repeat unit. A physical map derived from the analysis of restriction endonuclease digests of the repeat unit, which measures 13.9 kilobase pairs, is similar to the map derived from genomic DNA. In common with several other species, the 26 S rRNA gene terminates with a HindIII recognition site.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001156 Artemia A genus of CRUSTACEA of the order ANOSTRACA, found in briny pools and lakes and often cultured for fish food. It has 168 chromosomes and differs from most crustaceans in that its blood contains hemoglobin. Brine Shrimp,Shrimp, Brine,Artemias,Brine Shrimps,Shrimps, Brine
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
January 1988, Molecular and biochemical parasitology,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
March 1983, Current genetics,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
April 1992, Parasitology,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
December 1979, Nucleic acids research,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
January 1991, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
January 1990, The New biologist,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
May 1982, Biochimica et biophysica acta,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
January 1982, Chromosoma,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
September 1982, The Biochemical journal,
J C Vaughn, and D J Whitman, and J C Bagshaw, and J C Helder
December 1988, Indian journal of biochemistry & biophysics,
Copied contents to your clipboard!