Restriction enzyme cleavage of ultraviolet-damaged DNA. 1982

J E Cleaver, and L Samson, and G H Thomas

SV40 and pBR322 DNAs damaged by ultraviolet light were cleaved abnormally by several restriction enzymes because of damage to pyrimidines in the recognition sequences. The use of a tandemly duplicated plasmid provided a particularly sensitive target molecule for detecting pyrimidine dimers and other possible photoproducts. The relative efficiency with which cleavage was blocked (HindIII greater than TaqI greater than EcoRI greater than BamI greater than SalI much greater than Hha I, Hae III) corresponds approximately to the relative frequency of pyrimidine dimer formation in the recognition sequences, but at a slightly higher frequency in potential sites for the non-cyclobutane T-C product. The pyrimidine dimers appear to have a range of influence that extends 1 to 3 basepairs along the DNA molecule. These effects provide clues to the way DNA damage from mutagens and carcinogens can interfere with specific enzyme-DNA interactions.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

J E Cleaver, and L Samson, and G H Thomas
October 1983, Journal of molecular biology,
J E Cleaver, and L Samson, and G H Thomas
June 1986, Journal of radiation research,
J E Cleaver, and L Samson, and G H Thomas
August 1993, European journal of biochemistry,
J E Cleaver, and L Samson, and G H Thomas
January 1993, Nucleic acids research,
J E Cleaver, and L Samson, and G H Thomas
March 1992, FEBS letters,
J E Cleaver, and L Samson, and G H Thomas
December 1996, Journal of molecular biology,
J E Cleaver, and L Samson, and G H Thomas
October 1990, Nihon Hifuka Gakkai zasshi. The Japanese journal of dermatology,
J E Cleaver, and L Samson, and G H Thomas
January 2000, Nucleic acids symposium series,
J E Cleaver, and L Samson, and G H Thomas
November 1978, Molecular & general genetics : MGG,
J E Cleaver, and L Samson, and G H Thomas
November 2010, Nucleic acids research,
Copied contents to your clipboard!