Activation of Pseudomonas cytochrome oxidase by limited proteolysis with subtilisin. 1982

P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton

Oxidized Pseudomonas cytochrome oxidase (ferrocytochrome c2: oxygen oxidoreductase; E.C.1.9.3.2) can be digested with subtilisin under controlled conditions that convert the original parent polypeptide chain (Mr on SDS gels approximately equal to 60,000) to a slightly smaller species (Mr on SDS gels approximately equal to 58,000). Under the conditions used (0.33% subtilisin, w/w, pH 7.4), the product formed from the oxidase was relatively stable to further digestion. Cytochrome oxidase activity was assayed at intervals during proteolysis by following the rate of oxidation of Pseudomonas ferrocytochrome c-551 by the enzyme in the presence of oxygen. The activity increased to a plateau that was more than two times the value for an untreated control. These observations suggest that clipping a small peptide from Pseudomonas cytochrome oxidase either facilitates the rate-limiting electron transfer between the intraprotein heme c and heme d1, enhances the interaction of the enzyme with ferrocytochrome c-551, or both.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013381 Subtilisins A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.- Alcalase,AprA-Subtilisin,Bacillus amyloliquefaciens Serine Protease,Bacillus subtilis Alkaline Proteinase,Carlsberg Subtilisin,Maxatase,Nagarse,Novo Alcalase,Profezim,Protease VII,Subtilisin 72,Subtilisin A,Subtilisin BPN',Subtilisin Carlsberg,Subtilisin DY,Subtilisin E,Subtilisin GX,Subtilisin Novo,Subtilopeptidase A,Alcalase, Novo,AprA Subtilisin,Subtilisin, Carlsberg

Related Publications

P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
May 1961, Journal of biochemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
June 1993, Bioscience, biotechnology, and biochemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
January 1983, The International journal of biochemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
December 1980, Biochemical and biophysical research communications,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
July 1983, Proceedings of the National Academy of Sciences of the United States of America,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
July 1975, FEBS letters,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
April 1979, The Journal of biological chemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
August 1980, Biochemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
January 1983, The International journal of biochemistry,
P M Horowitz, and K Falksen, and B B Muhoberac, and D C Wharton
October 1964, Nature,
Copied contents to your clipboard!