Regulation of HeLa cell transferrin receptors. 1982

J H Ward, and J P Kushner, and J Kaplan

HeLa cells were found to have a single class of non-interacting receptors specific for transferrin. Both apotransferrin and diferric transferrin competed equally with 125I-diferric transferrin for receptor binding. Transferrin binding was temperature-dependent and reversible. Binding of transferrin to cells exhibited a KD of 27 nM with a maximum binding capacity of 1.8-3.7 x 10(6) molecules/cell. Cells grown in the presence of diferric transferrin or in the presence of ferric ammonium citrate exhibited a concentration- and time-dependent decrease in 125I-diferric transferrin binding. The decrease in binding activity reflected a reduction in receptor number rather than an alteration in ligand receptor affinity. Growth of cells in saturating concentrations of apotransferrin did not cause a decrease in receptor number. When iron-treated cells were removed to media free of ferric ammonium citrate, the receptor number returned to control values by 40 h. When receptors were removed with trypsin, cells grown and maintained in ferric ammonium citrate-supplemented media demonstrated a rate of receptor reappearance 47% that of control cells grown in ferric ammonium citrate-free media. Cells grown in media supplemented with diferric transferrin or ferric ammonium citrate exhibited an increase in cytosolic iron content. The transferrin receptor number returned to normal after cells were removed to unsupplemented media, despite persistent elevation of cytosolic iron content. Increased iron content did not appear to be the sole factor determining receptor number.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

J H Ward, and J P Kushner, and J Kaplan
September 1984, The Journal of biological chemistry,
J H Ward, and J P Kushner, and J Kaplan
March 1985, Journal of cellular physiology,
J H Ward, and J P Kushner, and J Kaplan
January 1990, Scandinavian journal of clinical and laboratory investigation. Supplementum,
J H Ward, and J P Kushner, and J Kaplan
January 1987, Investigative radiology,
J H Ward, and J P Kushner, and J Kaplan
October 1980, Canadian journal of biochemistry,
J H Ward, and J P Kushner, and J Kaplan
August 1992, American journal of hematology,
J H Ward, and J P Kushner, and J Kaplan
September 1991, Molecular biotherapy,
J H Ward, and J P Kushner, and J Kaplan
March 2019, Free radical biology & medicine,
J H Ward, and J P Kushner, and J Kaplan
March 1990, Molecular endocrinology (Baltimore, Md.),
J H Ward, and J P Kushner, and J Kaplan
January 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!