Macrocyst development in Dictyostelium discoideum. I. Induction of synchronous development by giant cells and biochemical analysis. 1982

Y Saga, and K Yanagisawa

In Dictyostelium discoideum, cytological and physiological studies on macrocyst formation revealed that this process consists of at least two steps: the production of giant cells, which are believed to be formed from the fusion of cells of two opposite mating types, and the subsequent induction of macrocyst development by the giant cells. The conditions that had been considered formerly to be required for macrocyst formation, such as darkness at the presence of two cells of complementary mating types in heterothallic strains, were actually required only for the production of the giant cells. Once giant cells are produced, the surrounding cells can aggregate and form macrocysts even in the light. Furthermore, it was demonstrated that giant cells can switch the developmental mode of the surrounding cells to macrocyst formation. That is, if a critical number of the isolated giant cells are introduced into a cell population of a single strain of NC4, which normally would produce only fruiting-bodies, macrocysts are formed instead. When in the presence of giant cells, the development of macrocysts may be initiated by starvation. Therefore, if all cells are made to starve simultaneously development begins and proceeds synchronously. Using this technique of synchronous development, the developmental kinetics of enzyme activities were assayed during macrocyst and fruiting-body formation. Considerable differences in the patterns of those enzyme activities were demonstrated between the two developmental modes of D. discoideum.

UI MeSH Term Description Entries
D008361 Mannosidases Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE. Mannosidase
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005957 UTP-Glucose-1-Phosphate Uridylyltransferase An enzyme that catalyzes the formation of UDPglucose from UTP plus glucose 1-phosphate. EC 2.7.7.9. Glucosephosphate Uridylyltransferase,UDP Glucose Pyrophosphorylase,UDPG Pyrophosphorylase,Pyrophosphorylase, UDP Glucose,Pyrophosphorylase, UDPG,UTP Glucose 1 Phosphate Uridylyltransferase,Uridylyltransferase, Glucosephosphate,Uridylyltransferase, UTP-Glucose-1-Phosphate
D000118 Acetylglucosaminidase A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue. N-Acetyl-beta-D-glucosaminidase,Chitobiase,N,N-Diacetylchitobiase,N-Ac-beta-Glucosaminidase,NAGase,beta-D-Acetamido-2-Deoxyglucosidase,beta-D-N-acetylglucosaminidase,beta-N-Acetylglucosaminidase,N Ac beta Glucosaminidase,N Acetyl beta D glucosaminidase,N,N Diacetylchitobiase,beta D Acetamido 2 Deoxyglucosidase,beta D N acetylglucosaminidase,beta N Acetylglucosaminidase
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D001617 beta-Glucosidase An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE. Cellobiases,Amygdalase,Cellobiase,Emulsion beta-D-Glucosidase,Gentiobiase,Emulsion beta D Glucosidase,beta Glucosidase,beta-D-Glucosidase, Emulsion
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Y Saga, and K Yanagisawa
June 1973, Proceedings of the National Academy of Sciences of the United States of America,
Y Saga, and K Yanagisawa
October 1976, The Journal of biological chemistry,
Y Saga, and K Yanagisawa
January 1992, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Y Saga, and K Yanagisawa
January 2001, Cell biology international,
Y Saga, and K Yanagisawa
January 1987, Differentiation; research in biological diversity,
Y Saga, and K Yanagisawa
February 1982, Experimental cell research,
Y Saga, and K Yanagisawa
April 1987, Molecular and cellular biochemistry,
Copied contents to your clipboard!