Alterations in neurotransmitter receptor binding in discrete areas of the copper-deficient rat brain. 1982

D J Feller, and B L O'Dell, and D B Bylund

Neonatal copper deficiency produced alterations in central neurotransmitter receptors that were selective with respect both to brain region and to neurotransmitter receptor type. Both high- and low-affinity dopamine receptor densities in the corpus striatum were significantly lowered, 55% and 29%, respectively, when expressed on a wet weight basis. There was a significant decrease in the level of muscarinic receptors in the striatum whether expressed on the basis of wet weight (50%) or protein (27%). A smaller reduction in muscarinic receptor density was observed in the cortex, whereas there was no effect of copper deficiency in the cerebellum. The treatment did not change beta-adrenergic receptor binding in either the cortex or cerebellum. The affinities of the receptors for the ligands was not affected by the low-copper diet. It was previously reported that copper deficiency produces regionally specific decreases in the concentrations of dopamine and norepinephrine. The greatest reduction occurred in the concentration of dopamine in the corpus striatum. The results from both studies suggest that copper deficiency in post-weanling rats may induce a selective morphological lesion.

UI MeSH Term Description Entries
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator

Related Publications

D J Feller, and B L O'Dell, and D B Bylund
November 1976, Brain research,
D J Feller, and B L O'Dell, and D B Bylund
October 1989, Brain research,
D J Feller, and B L O'Dell, and D B Bylund
November 1989, Neuroscience letters,
D J Feller, and B L O'Dell, and D B Bylund
May 1988, FEBS letters,
D J Feller, and B L O'Dell, and D B Bylund
October 1980, Pharmacological research communications,
D J Feller, and B L O'Dell, and D B Bylund
January 1986, Chronobiology international,
D J Feller, and B L O'Dell, and D B Bylund
January 1979, Life sciences,
D J Feller, and B L O'Dell, and D B Bylund
January 1980, Advances in biochemical psychopharmacology,
D J Feller, and B L O'Dell, and D B Bylund
October 1953, Klinische Wochenschrift,
D J Feller, and B L O'Dell, and D B Bylund
July 2011, Drug and chemical toxicology,
Copied contents to your clipboard!