Modulation of nerve membrane sodium channels by chemicals. 1981

T Narahashi

1. Modulations of sodium channel kinetics by grayanotoxins and pyrethroids have been studied using voltage clamped, internally perfused giant axons from crayfish and squid. 2. Grayanotoxin I and alpha-dihydrograyanotoxin II greatly depolarize the nerve membrane through an increase in resting sodium channel permeability to sodium ions. 3. Grayanotoxins modify a fraction of sodium channel population to give rise to a slow conductance increase with little or no inactivation, and the slow conductance-membrane potential curve is shifted toward hyperpolarization. This accounts for the depolarization. 4. The tail current associated with step repolarization during the slow current in grayanotoxins decays with a dual exponential time course. 5. (+)-trans tetramethrin and (+)-trans allethrin also modify a fraction of sodium channel population in generating a slow current, which attains a maximum slowly and decays very slowly during a maintained depolarizing step. The membrane is depolarized only slightly. 6. The tail current associated with step repolarization during the slow current in the pyrethroids is very large in initial amplitude and decays very slowly. 7. The rate at which the sodium channel arrives at the modified open state in the presence of pyrethroids is expressed by a dual exponential function, and the slow phase disappears following removal of the sodium inactivation mechanism by internal perfusion of pronase. 8. A kinetic model is proposed to account for the actions of both grayanotoxins and pyrethroids on sodium channels. Both chemicals interact with the channel at both open and closed states to yield a modified open state which results in a slow sodium current.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000487 Allethrins Synthetic analogs of the naturally occurring insecticides cinerin, jasmolin, and pyrethrin. (From Merck Index, 11th ed) Allethrin,Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methyl-1-propenyl)-, 2-methyl-4-oxo-3-(2-propenyl)-2-cyclopenten-1-yl ester
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Narahashi
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
T Narahashi
January 1981, Annual review of physiology,
T Narahashi
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
T Narahashi
January 1974, Pflugers Archiv : European journal of physiology,
T Narahashi
July 2020, The Journal of physiology,
T Narahashi
November 2020, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!