Restriction enzyme mapping of vaccinia virus DNA. 1982

F M DeFilippes

The cleavage sites for the restriction enzymes Bg/I, HindIII, KpnI, SalI, SmaI, and XhoI were located, from primary data, on the DNA isolated from the WR strain of vaccinia virus. Bg/I and SmaI divide the DNA into five segments which can be isolated by sucrose gradient centrifugation. These large segments provide a convenient means to group segments produced by other enzymes. The construction of physical maps was initiated by identifying the segments at each end of the DNA and then finding segments which were adjacent to these terminal sections. This was accomplished by isolating large shear fragments which contained the covalently linked termini of the DNA. Most of the data needed to derive the maps were obtained by isolating segments produce by one enzyme and then cleaving these individual segments with a second enzyme.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014616 Vaccinia virus The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS. Buffalopox virus,Poxvirus officinale,Rabbitpox virus,Buffalo Pox Virus,Rabbit Pox Virus,Buffalo Pox Viruses,Buffalopox viruses,Rabbit Pox Viruses,Rabbitpox viruses,Vaccinia viruses,Virus, Buffalo Pox,Viruses, Buffalo Pox,virus, Buffalopox
D015247 Deoxyribonuclease HindIII One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence A/AGCTT at the slash. HindIII is from Haemophilus influenzae R(d). Numerous isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme HindIII,Deoxyribonuclease BstFI,Deoxyribonuclease EcoVIII,Endonuclease HindIII,B Pertussis Restriction Enzyme I,BpeI Endonuclease,Endodeoxyribonuclease BpeI,Endonuclease Asp52I,Endonuclease BbrI,Endonuclease BpeI,Endonuclease BstFI,Endonuclease Cfr32I,Endonuclease ChuI,Endonuclease Eco65I,Endonuclease Eco98I,Endonuclease EcoVIII,Endonuclease Hin1076III,Endonuclease Hin173I,Endonuclease HinJCII,Endonuclease HinbIII,Endonuclease HinfII,Endonuclease HsuI,Endonuclease LlaCI,Endonuclease MkiI,LlaCI, Endonuclease
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

F M DeFilippes
January 1985, Journal of virology,
F M DeFilippes
July 1978, Molecular & general genetics : MGG,
F M DeFilippes
December 1986, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
F M DeFilippes
January 1984, Journal of virology,
F M DeFilippes
January 1993, Molekuliarnaia biologiia,
F M DeFilippes
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
F M DeFilippes
October 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!