Nucleotide sequence of the region between the 18S rRNA sequence and the 28S rRNA sequence of rat ribosomal DNA. 1982

C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum

The DNA sequence of the intragenic region of the rat 45S ribosomal RNA precursor was determined. This sequence contains 2282 nucleotides and extends from the conserved EcoR I site near the 3' terminus of 18S rRNA to 69 nucleotides downstream of the 5' terminus of 28S rRNA. The sequences corresponding to 18S and 5.8S rRNA were identified by comparison with previously published data. The 5' terminus of rat 28S rRNA was identified by S1 nuclease protection and reverse transcriptase elongation assays. The internal transcribed spacers were found to be 1066 and 765 nucleotides long and had little homology with those of Xenopus and yeast. Regions of sequence homology between rat and Xenopus were found at the junctions of the internal transcribed spacers with 18S, 5.8S and 28S rRNA. These homologies suggest that these sequences may function as recognition sites for the processing of the ribosomal precursor RNA.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
January 1981, Molecular & general genetics : MGG,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
January 1983, Molecular & general genetics : MGG,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
December 1980, Nucleic acids research,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
August 1983, Bioscience reports,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
July 2007, Biological & pharmaceutical bulletin,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
May 1983, Nucleic acids research,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
February 1984, Nucleic acids research,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
October 1969, The Biochemical journal,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
December 1993, Gene,
C S Subrahmanyam, and B Cassidy, and H Busch, and L I Rothblum
September 1989, Nucleic acids research,
Copied contents to your clipboard!