Primary site of action of ketoconazole on Candida albicans. 1982

J Uno, and M L Shigematsu, and T Arai

Ketoconazole, an antifungal drug, completely inhibited the growth of Candida albicans 7N at concentrations of greater than or equal to 50 microgram/ml (94 microM). However, ketoconazole incompletely inhibited the growth of this opportunistic yeast at concentrations of 25 to 0.2 microgram/ml (47 to 0.4 microM). At these lower concentrations, 2,3,5-triphenyl tetrazolium chloride, an electron acceptor, was reduced by several strains of C. albicans. This effect resulted in red coloration of colonies. Concomitantly, this phenomenon was not antagonized in the presence of ergosterol. Furthermore, neither ketoconazole nor antimycin A inhibited the growth of C. albicans under anaerobic conditions, as revealed by a paper disk method. Ketoconazole at the concentrations stated above inhibited endogenous and exogenous respiration immediately after it was added to a system containing log phase C. albicans cells, as determined polarographically. At the same time, ketoconazole inhibited the activity of NADH oxidase at the mitochondrial level. In contrast, higher concentrations of ketoconazole (greater than 100 microM) were required to inhibit the activity of succinate oxidase from rat liver mitochondria. In addition, concentrations of ketoconazole greater than 100 microM were required to impair the uptake of labeled leucine and adenine and, subsequently, the incorporation of the former into protein and the latter into DNA and RNA in intact cells. On the other hand, ketoconazole at concentrations of 10, 1.0, and 0.4 microM had no effect on either membrane permeability or macromolecular synthesis.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

J Uno, and M L Shigematsu, and T Arai
December 1989, Journal of chemotherapy (Florence, Italy),
J Uno, and M L Shigematsu, and T Arai
January 1983, Antimicrobial agents and chemotherapy,
J Uno, and M L Shigematsu, and T Arai
February 1987, Antimicrobial agents and chemotherapy,
J Uno, and M L Shigematsu, and T Arai
May 1985, Medicina clinica,
J Uno, and M L Shigematsu, and T Arai
September 1982, Research communications in chemical pathology and pharmacology,
J Uno, and M L Shigematsu, and T Arai
October 1995, The Journal of antimicrobial chemotherapy,
J Uno, and M L Shigematsu, and T Arai
January 1983, Antimicrobial agents and chemotherapy,
J Uno, and M L Shigematsu, and T Arai
February 2004, Farmaco (Societa chimica italiana : 1989),
J Uno, and M L Shigematsu, and T Arai
December 1982, The Journal of antimicrobial chemotherapy,
J Uno, and M L Shigematsu, and T Arai
April 1987, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!