Transformation of restriction endonuclease phenotype in Streptococcus pneumoniae. 1982

C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks

The genetic basis of the unique restriction endonuclease DpnI, that cleaves only at a methylated sequence, 5'-GmeATC-3', and of the complementary endonuclease DpnII, which cleaves at the same sequence when it is not methylated, was investigated. Different strains of Streptococcus pneumoniae isolated from patients contained either DpnI (two isolates) or DpnII (six isolates). The latter strains also contained DNA methylated at the 5'-GATC-3' sequence. A restrictable bacteriophage, HB-3, was used to characterize the various strains and to select for transformants. One laboratory strain contained neither DpnI nor Dpn II. It was probably derived from a DpnI-containing strain, and its DNA was not methylated at 5'-GATC-3'. Cells of this strain were transformed to the DpnI restriction phenotype by DNA from a DpnI-containing strain and to the DpnII restriction phenotype by DNA from a DpnII-containing strain. Neither cross-transformation, that is, transformation to one phenotype by DNA from a strain of the other phenotype, nor spontaneous conversion was observed. Extracts of transformants to the new restriction phenotype were shown to contain the corresponding endonuclease.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D004248 DNA (Cytosine-5-)-Methyltransferases Enzymes that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA. DNA (Cytosine-5-)-Methyltransferase,DNA Cytosine-5-Methylase,DNA (Cytosine 5) Methyltransferase,Cytosine-5-Methylase, DNA,DNA Cytosine 5 Methylase
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
December 1993, Letters in applied microbiology,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
December 1986, Journal of bacteriology,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
November 1978, Nucleic acids research,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
June 1994, Molecular microbiology,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
February 1991, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
June 1987, Molecular & general genetics : MGG,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
March 1980, Journal of bacteriology,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
April 2013, The ISME journal,
C C Muckerman, and S S Springhorn, and B Greenberg, and S A Lacks
July 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Copied contents to your clipboard!