Independent locations of kinase and 3'-phosphatase activities on T4 polynucleotide kinase. 1982

D A Soltis, and O C Uhlenbeck

We have used two chemical modification reagents and three proteases to study the relationship between the two activities of T4 polynucleotide kinase. In each case, conditions were found where one of the two activities of the enzyme could be eliminated without greatly reducing the other. Taken together, these data indicate that the two activities are catalyzed by amino acid residues located in separate active sites on the polypeptide chain. Specific exopeptidase digestion indicates that the kinase activity lies in the NH2-terminal and the phosphatase in the COOH-terminal portion of the polypeptide chain. Partial trypsin digestion produces a 29,000-dalton fragment with no kinase activity and nearly normal 3'-phosphatase activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011116 Polynucleotide 5'-Hydroxyl-Kinase An enzyme that catalyzes the transfer of a phosphate group to the 5'-terminal hydroxyl groups of DNA and RNA. EC 2.7.1.78. Polynucleotide Hydroxylkinase,Polynucleotide Kinase,5'-Hydroxylpolynucleotide Kinase,DNA 5'-Hydroxylkinase,DNA Kinase,Polynucleotide 5'-Hydroxyl Kinase,Polynucleotide Hydroxykinase,5' Hydroxylpolynucleotide Kinase,5'-Hydroxyl Kinase, Polynucleotide,5'-Hydroxyl-Kinase, Polynucleotide,5'-Hydroxylkinase, DNA,DNA 5' Hydroxylkinase,Hydroxykinase, Polynucleotide,Hydroxylkinase, Polynucleotide,Kinase, 5'-Hydroxylpolynucleotide,Kinase, DNA,Kinase, Polynucleotide,Kinase, Polynucleotide 5'-Hydroxyl,Polynucleotide 5' Hydroxyl Kinase
D004047 Diethyl Pyrocarbonate Preservative for wines, soft drinks, and fruit juices and a gentle esterifying agent. Diethyl Dicarbonate,Diethyl Oxydiformate,Pyrocarbonic Acid Diethyl Ester,Diethylpyrocarbonate,Ethoxyformic Anhydride,Anhydride, Ethoxyformic,Dicarbonate, Diethyl,Oxydiformate, Diethyl,Pyrocarbonate, Diethyl
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

D A Soltis, and O C Uhlenbeck
November 1977, Biochemistry,
D A Soltis, and O C Uhlenbeck
January 1986, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
D A Soltis, and O C Uhlenbeck
January 2013, Nucleic acids research,
D A Soltis, and O C Uhlenbeck
January 1981, Gene amplification and analysis,
D A Soltis, and O C Uhlenbeck
August 1978, Journal of molecular biology,
Copied contents to your clipboard!