Synthesis, turnover, and down-regulation of epidermal growth factor receptors in human A431 epidermoid carcinoma cells and skin fibroblasts. 1982

M N Krupp, and D T Connolly, and M D Lane

Epidermal growth factor (EGF) receptors extracted with Triton X-100 from human skin fibroblasts and A431 epidermoid carcinoma cells rapidly lose EGF-binding activity precipitable with polyethylene glycol. The presence of concanavalin A which can cross-link and, thereby, aggregate the receptors, allowed quantitative recovery of the lost EGF-binding activity. Scatchard analysis of EGF binding of Triton X-100-solubilized receptors showed that A431 cells and skin fibroblasts possess approximately 1.5 X 10(6) and 7 X 10(4) EGF-binding sites/cell, respectively, which exhibit similar affinities for the ligand. The heavy isotope density-shift method was employed to determine whether differences in rates of receptor synthesis or decay account for the large difference in number of receptors/cell between the two cell types. After shifting cells to medium containing heavy (15N, 13C, and 2H) amino acids, light and heavy receptors, solubilized from total cellular membranes, were resolved by isopycnic banding on density gradients and then quantitated. It was demonstrated that A431 cells synthesize EGF receptors at a rate 12 times faster than skin fibroblasts and that the half-life for receptor decay of A431 cells is somewhat longer (t1/2 = 16 h) than that (t1/2 = 9 h) of fibroblasts. Down-regulation of cell surface and total cellular EGF-binding capacity in A431 cells occurs with a t1/2 of 2-3 h and results in a 70-83% decrease in receptor level in 12 h. Scatchard analysis revealed that these changes in EGF binding were due to an alteration of receptor number and not EGF-binding affinity. Rates of EGF receptor synthesis and inactivation/decay were determined by the heavy isotope density-shift method. No change in the rate of receptor synthesis occurred as a consequence of EGF receptor down-regulation. Down-regulation, however, caused a decrease in receptor half-life from 16 to 4.5 h. These results indicate that EGF-dependent regulation of EGF receptor level in A431 cells involves an alteration of the rate of receptor inactivation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M N Krupp, and D T Connolly, and M D Lane
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
M N Krupp, and D T Connolly, and M D Lane
January 1984, Somatic cell and molecular genetics,
M N Krupp, and D T Connolly, and M D Lane
January 1997, Advances in experimental medicine and biology,
M N Krupp, and D T Connolly, and M D Lane
July 1986, The Journal of cell biology,
M N Krupp, and D T Connolly, and M D Lane
November 1998, The Journal of biological chemistry,
M N Krupp, and D T Connolly, and M D Lane
February 1984, Archives of biochemistry and biophysics,
M N Krupp, and D T Connolly, and M D Lane
April 1988, The Journal of biological chemistry,
M N Krupp, and D T Connolly, and M D Lane
June 1984, The Journal of biological chemistry,
M N Krupp, and D T Connolly, and M D Lane
June 1984, The Journal of biological chemistry,
Copied contents to your clipboard!