Delays in inactivation development and activation kinetics in myxicola giant axons. 1982

L Goldman, and J L Kenyon

Na inactivation was studied in Myxicola (two-pulse procedure, 6-ms gap between conditioning and test pulses). Inactivation developed with an initial delay (range 130-817 microseconds) followed by a simple exponential decline (time constant tau c). Delays (deviations from a simple exponential) are seen only for brief conditioning pulses were gNa is slightly activated. Hodgkin-Huxley kinetics with series resistance, Rs, predict deviations from a simple exponential only for conditioning pulses that substantially activate gNa. Reducing INa fivefold (Tris substitution) had no effect on either tau c or delay. Delay in not generated by Rs or by contamination from activation development. The slowest time constant in Na tails is approximately 1 ms (Goldman and Hahin, 1978) and the gap was 6 ms. Shortening the gap to 2 ms had no effect on either tau c or delay. Delay is a true property of the channel. Delay decreased with more positive conditioning potentials, and also decreased approximately proportionally with time to peak gNa during the conditioning pulse, as expected for sequentially coupled activation and inactivation. In a few cases the difference between Na current values for brief conditioning pulses and the tau c exponential could be measured. Difference values decayed exponentially with time constant tau m. The inactivation time course is described by a model that assumes a process with the kinetics of gNa activation as a precursor to inactivation.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011077 Polychaeta A class of marine annelids including sandworms, tube worms, clamworms, and fire worms. It includes also the genus Myxicola infundibulum. Myxicola,Myxicolas,Polychaetas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

L Goldman, and J L Kenyon
September 1976, Biophysical journal,
L Goldman, and J L Kenyon
August 1986, Biophysical journal,
L Goldman, and J L Kenyon
June 1987, The Journal of pharmacology and experimental therapeutics,
L Goldman, and J L Kenyon
March 1976, Biophysical journal,
L Goldman, and J L Kenyon
June 1986, The Journal of neuroscience nursing : journal of the American Association of Neuroscience Nurses,
L Goldman, and J L Kenyon
June 1977, The Journal of general physiology,
Copied contents to your clipboard!